In the present study, novel Co3O4/NiO nanosponges designed for the photocatalytic degradation of organic contaminants were synthesized by a simple precipitation technique. The formation of sponge-like nanostructures w...In the present study, novel Co3O4/NiO nanosponges designed for the photocatalytic degradation of organic contaminants were synthesized by a simple precipitation technique. The formation of sponge-like nanostructures was clearly evident through the TEM analysis. The photocatalytic efficiency was tested against rhodamine B (RhB) and congo red (CR) dye solutions. Co3O4/NiO nanosponges showed excellent and enhanced photocatalytic efficacy compared to those of Co3O4, NiO nanoparticles, and standards like Ti02 and ZnO. The influence of paramount important operational parameters was explored and the conditions for the best photocatalytic efficiency were optimized. The trapping experiment revealed that the reactive oxygen species (ROS) identified was · OH radical. These findings certainly open up a new way for synthesizing a morphology dependent photocatalyst.展开更多
文摘In the present study, novel Co3O4/NiO nanosponges designed for the photocatalytic degradation of organic contaminants were synthesized by a simple precipitation technique. The formation of sponge-like nanostructures was clearly evident through the TEM analysis. The photocatalytic efficiency was tested against rhodamine B (RhB) and congo red (CR) dye solutions. Co3O4/NiO nanosponges showed excellent and enhanced photocatalytic efficacy compared to those of Co3O4, NiO nanoparticles, and standards like Ti02 and ZnO. The influence of paramount important operational parameters was explored and the conditions for the best photocatalytic efficiency were optimized. The trapping experiment revealed that the reactive oxygen species (ROS) identified was · OH radical. These findings certainly open up a new way for synthesizing a morphology dependent photocatalyst.