期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Forecasting the Municipal Solid Waste Using GSO-XGBoost Model 被引量:1
1
作者 vaishnavi jayaraman Arun Raj Lakshminarayanan +1 位作者 Saravanan Parthasarathy ASuganthy 《Intelligent Automation & Soft Computing》 SCIE 2023年第7期301-320,共20页
Waste production rises in tandem with population growth and increased utilization.The indecorous disposal of waste paves the way for huge disaster named as climate change.The National Environment Agency(NEA)of Singapo... Waste production rises in tandem with population growth and increased utilization.The indecorous disposal of waste paves the way for huge disaster named as climate change.The National Environment Agency(NEA)of Singapore oversees the sustainable management of waste across the country.The three main contributors to the solid waste of Singapore are paper and cardboard(P&C),plastic,and food scraps.Besides,they have a negligible rate of recycling.In this study,Machine Learning techniques were utilized to forecast the amount of garbage also known as waste audits.The waste audit would aid the authorities to plan their waste infrastructure.The applied models were k-nearest neighbors,Support Vector Regressor,ExtraTrees,CatBoost,and XGBoost.The XGBoost model with its default parameters performed better with a lower Mean Absolute Percentage Error(MAPE)of 8.3093(P&C waste),8.3217(plastic waste),and 6.9495(food waste).However,Grid Search Optimization(GSO)was used to enhance the parameters of the XGBoost model,increasing its effectiveness.Therefore,the optimized XGBoost algorithm performs the best for P&C,plastics,and food waste with MAPE of 4.9349,6.7967,and 5.9626,respectively.The proposed GSO-XGBoost model yields better results than the other employed models in predicting municipal solid waste. 展开更多
关键词 Waste management municipal solid waste grid search optimization XGBoost machine learning SUSTAINABILITY
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部