The analytical approach and the thermomechanical behavior of a Cr-Ni-Mo-Mn-N austenitic stainless steel were characterized based on the parameters of work hardening (h), dynamic recovery (r) and dynamic recrystallizat...The analytical approach and the thermomechanical behavior of a Cr-Ni-Mo-Mn-N austenitic stainless steel were characterized based on the parameters of work hardening (h), dynamic recovery (r) and dynamic recrystallization (n, t<sub>0.5</sub>), considering constitutive equations (σ, ε) and deformation conditions expressed according to the Zener-Hollomon parameter (Z). The results indicated that the curves were affected by the deformation conditions and that the stress levels increased with Z under high work hardening rates. The σ<sub>c</sub>/σ<sub>p</sub> ratio was relatively high in the first part of the curves, indicating that softening was promoted by intense dynamic recovery (DRV). This was corroborated by the high values of r and average stacking fault energy, γ<sub>s</sub><sub>fe</sub> = 66.86 mJ/m<sup>2</sup>, which facilitated the thermally activated mechanisms, increasing the effectiveness of DRV and delaying the onset of dynamic recrystallization (DRX). The second part of the curves indicates that there was a delay in the kinetics of dynamic softening, with a higher value of t<sub>0.5</sub> and lower values of the Avrami exponent (n) due to the competing DRV-DRX mechanisms, and steady state stress (σ<sub>ss</sub>) was achieved under higher rates of deformation.展开更多
The main objective of this research is to better understand the correlation between the constituent phases presented in the super-duplex steel SAF 2507 when it is under welding process by arc shielding gas MIG-MAG (Me...The main objective of this research is to better understand the correlation between the constituent phases presented in the super-duplex steel SAF 2507 when it is under welding process by arc shielding gas MIG-MAG (Metal Inert Gas-Metal Active Gas). Conventional short circuit transfer and derivative STT (Surface Tension Transfer) using the 2594 welding wire as a filler metal and the effects on welding power in hardness, toughness and pitting corrosion are considered here. The results showed that the welding energy (Ew) changed the α/γ-phase’s balance and occasionally formed σ-phase in ferrite grain boundaries which led to changes in hardness, toughness and pitting corrosion resistance in molten zone (MZ), heat activated zone (HAZ) and metal base regions (MB). Furthermore, the increased amount of γ-phase improved the pitting corrosion resistance index (PRENγ) mainly in the MZ. This is due to decrease of α-phase fraction and formation of coarser grains, for higher welding energy. The toughness in the MZ decreased with less formation of γ-phase, coalescence of ferritic grains and localized formation of σ-phase, raising the hardness in the HAZ when the welding energy was lower.展开更多
文摘The analytical approach and the thermomechanical behavior of a Cr-Ni-Mo-Mn-N austenitic stainless steel were characterized based on the parameters of work hardening (h), dynamic recovery (r) and dynamic recrystallization (n, t<sub>0.5</sub>), considering constitutive equations (σ, ε) and deformation conditions expressed according to the Zener-Hollomon parameter (Z). The results indicated that the curves were affected by the deformation conditions and that the stress levels increased with Z under high work hardening rates. The σ<sub>c</sub>/σ<sub>p</sub> ratio was relatively high in the first part of the curves, indicating that softening was promoted by intense dynamic recovery (DRV). This was corroborated by the high values of r and average stacking fault energy, γ<sub>s</sub><sub>fe</sub> = 66.86 mJ/m<sup>2</sup>, which facilitated the thermally activated mechanisms, increasing the effectiveness of DRV and delaying the onset of dynamic recrystallization (DRX). The second part of the curves indicates that there was a delay in the kinetics of dynamic softening, with a higher value of t<sub>0.5</sub> and lower values of the Avrami exponent (n) due to the competing DRV-DRX mechanisms, and steady state stress (σ<sub>ss</sub>) was achieved under higher rates of deformation.
文摘The main objective of this research is to better understand the correlation between the constituent phases presented in the super-duplex steel SAF 2507 when it is under welding process by arc shielding gas MIG-MAG (Metal Inert Gas-Metal Active Gas). Conventional short circuit transfer and derivative STT (Surface Tension Transfer) using the 2594 welding wire as a filler metal and the effects on welding power in hardness, toughness and pitting corrosion are considered here. The results showed that the welding energy (Ew) changed the α/γ-phase’s balance and occasionally formed σ-phase in ferrite grain boundaries which led to changes in hardness, toughness and pitting corrosion resistance in molten zone (MZ), heat activated zone (HAZ) and metal base regions (MB). Furthermore, the increased amount of γ-phase improved the pitting corrosion resistance index (PRENγ) mainly in the MZ. This is due to decrease of α-phase fraction and formation of coarser grains, for higher welding energy. The toughness in the MZ decreased with less formation of γ-phase, coalescence of ferritic grains and localized formation of σ-phase, raising the hardness in the HAZ when the welding energy was lower.