To create asymmetric somatic hybrids, the genome of the so-called donor protoplast is fragmented prior to protoplast fusion. As a result, only a limited amount of the donor genome is transferred to the fusion product....To create asymmetric somatic hybrids, the genome of the so-called donor protoplast is fragmented prior to protoplast fusion. As a result, only a limited amount of the donor genome is transferred to the fusion product. This technique can circumvent some commonly observed problems related to symmetric fusion and offers a practical breeding tool for asexual hybridization. Genomes are typically fragmented by irradiation, microprotoplast production or application of metabolic inhibitors such as iodoacetamide. Irradiation and microprotoplast production fragment the nuclear genome, whereas iodoacetamide inactivates the cytoplasmic genome. It can therefore be used to introduce cytoplasmic male sterility, an important practical application. For hybrid verification and genome characterization, molecular markers and cytogenetic techniques are applied. This review highlights and discusses progress made during the last decade in spermatophytes asymmetric protoplast fusion.展开更多
文摘To create asymmetric somatic hybrids, the genome of the so-called donor protoplast is fragmented prior to protoplast fusion. As a result, only a limited amount of the donor genome is transferred to the fusion product. This technique can circumvent some commonly observed problems related to symmetric fusion and offers a practical breeding tool for asexual hybridization. Genomes are typically fragmented by irradiation, microprotoplast production or application of metabolic inhibitors such as iodoacetamide. Irradiation and microprotoplast production fragment the nuclear genome, whereas iodoacetamide inactivates the cytoplasmic genome. It can therefore be used to introduce cytoplasmic male sterility, an important practical application. For hybrid verification and genome characterization, molecular markers and cytogenetic techniques are applied. This review highlights and discusses progress made during the last decade in spermatophytes asymmetric protoplast fusion.