Cross-sectional homogenization for full-core calculations of small and complex reactor configurations,such as research reactors,has been recently recognized as an interesting and challenging topic.This paper presents ...Cross-sectional homogenization for full-core calculations of small and complex reactor configurations,such as research reactors,has been recently recognized as an interesting and challenging topic.This paper presents the development of a PARCS/Serpent model for the neutronics analysis of a research reactor type TRIGA Mark-II loaded with Russian VVR-M2 fuel(known as the Dalat Nuclear Research Reactor or DNRR).The full-scale DNRR model and a supercell model for a shim/safety rod and its surrounding fuel bundles with the Monte Carlo code Serpent 2 were proposed to generate homogenized fewgroup cross sections for full-core diffusion calculations with PARCS.The full-scale DNRR model with Serpent 2 was also utilized as a reference to verify the PARCS/Serpent calculations.Comparison of the effective neutron multiplication factors,radial and axial core power distributions,and control rod worths showed a generally good agreement between PARCS and Serpent 2.In addition,the discrepancies between the PARCS and Serpent 2 results are also discussed.Consequently,the results indicate the applicability of the PARCS/Serpent model for further steady state and transient analyses of the DNRR.展开更多
Calculation of the neutron noise induced by fuel assembly vibrations in two pressurized water reactor(PWR) cores has been conducted to investigate the effect of cycle burnup on the properties of the ex-core detector n...Calculation of the neutron noise induced by fuel assembly vibrations in two pressurized water reactor(PWR) cores has been conducted to investigate the effect of cycle burnup on the properties of the ex-core detector noise. An extension of the method and the computational models of a previous work have been applied to two different PWR cores to examine a hypothesis that fuel assembly vibrations cause the corresponding peak in the auto power spectral density(APSD) increase during the cycle. Stochastic vibrations along a random two-dimensional trajectory of individual fuel assemblies were assumed to occur at different locations in the cores. Two models regarding the displacement amplitude of the vibrating assembly have been considered to determine the noise source. Then, the APSD of the ex-core detector noise was evaluated at three burnup steps. The results show that there is no monotonic tendency of the change in the APSD of ex-core detector; however, the increase in APSD occurs predominantly for peripheral assemblies. When assuming simultaneous vibrations of a number of fuel assemblies uniformly distributed over the core, the effect of the peripheral assemblies dominates the ex-core neutron noise.This behaviour was found similar in both cores.展开更多
基金the Ministry of Science and Technology of Vietnam(No.DTCB.06/18/VKHKTHN).
文摘Cross-sectional homogenization for full-core calculations of small and complex reactor configurations,such as research reactors,has been recently recognized as an interesting and challenging topic.This paper presents the development of a PARCS/Serpent model for the neutronics analysis of a research reactor type TRIGA Mark-II loaded with Russian VVR-M2 fuel(known as the Dalat Nuclear Research Reactor or DNRR).The full-scale DNRR model and a supercell model for a shim/safety rod and its surrounding fuel bundles with the Monte Carlo code Serpent 2 were proposed to generate homogenized fewgroup cross sections for full-core diffusion calculations with PARCS.The full-scale DNRR model with Serpent 2 was also utilized as a reference to verify the PARCS/Serpent calculations.Comparison of the effective neutron multiplication factors,radial and axial core power distributions,and control rod worths showed a generally good agreement between PARCS and Serpent 2.In addition,the discrepancies between the PARCS and Serpent 2 results are also discussed.Consequently,the results indicate the applicability of the PARCS/Serpent model for further steady state and transient analyses of the DNRR.
基金supported by Vietnam National Foundation for Science and Technology Development(NAFOSTED)(No.103.04-2014.79)
文摘Calculation of the neutron noise induced by fuel assembly vibrations in two pressurized water reactor(PWR) cores has been conducted to investigate the effect of cycle burnup on the properties of the ex-core detector noise. An extension of the method and the computational models of a previous work have been applied to two different PWR cores to examine a hypothesis that fuel assembly vibrations cause the corresponding peak in the auto power spectral density(APSD) increase during the cycle. Stochastic vibrations along a random two-dimensional trajectory of individual fuel assemblies were assumed to occur at different locations in the cores. Two models regarding the displacement amplitude of the vibrating assembly have been considered to determine the noise source. Then, the APSD of the ex-core detector noise was evaluated at three burnup steps. The results show that there is no monotonic tendency of the change in the APSD of ex-core detector; however, the increase in APSD occurs predominantly for peripheral assemblies. When assuming simultaneous vibrations of a number of fuel assemblies uniformly distributed over the core, the effect of the peripheral assemblies dominates the ex-core neutron noise.This behaviour was found similar in both cores.