AIM: To determine the plasmatic iron content and evaluate the oxidative stress(OS) markers in subjects receiving blood therapy.METHODS: Thirty-nine individuals with unspecified anemia receiving blood transfusions and ...AIM: To determine the plasmatic iron content and evaluate the oxidative stress(OS) markers in subjects receiving blood therapy.METHODS: Thirty-nine individuals with unspecified anemia receiving blood transfusions and 15 healthy subjects were included in the study. Anemic subjects were divided into three subgrou P:(1) those that received up to five blood transfusions(n = 14);(2) those that received from five to ten transfusions(n = 11); and(3) those that received more than ten transfusions(n = 14). Blood samples were collected by venous arm puncture and stored in tubes containing heparin. The plasma and cells were separated by centrifugation and subsequently used for analyses. Statistical analyses were performed using Kruskal-Wallis analysis of variance followed by Dunn's multiple comparison tests when appropriate.RESULTS: The eletrophoretic hemoglobin profiles of the subjects included in this study indicated that no patients presented with hemoglobinopathy. Labile plasmatic iron, ferritin, protein carbonyl, thiobarbituric acidreactive substances(TBARS) and dichlorofluorescein diacetate oxidation were significantly higher(P < 0.05), whereas total thiol levels were significantly lower(P < 0.05) in transfused subjects compared to controls. Additionally, the activity of catalase, superoxide dismutase and glutathione peroxidase were significantly lower in the transfused subjects(P < 0.05). Antioxidant enzyme activities and total thiol levels were positively correlated(P < 0.05), and negatively correlated with the levels of protein carbonyl and TBARS(P < 0.05). In contrast, protein carbonyl and TBARS were positively correlated(P < 0.05). Altogether, these data confirm the involvement of OS in patients following therapy with repeated blood transfusions.CONCLUSION: Our data reveal that changes in OS markers are correlated with levels of labile plasmatic iron and ferritin and the number of transfusions.展开更多
基金Supported by Grants from the Universidade Federal do Pampa,Universidade Federal do Rio Grande do Sul,Universidade Federal de Santa Maria,Fundao de Amparo a Pesquisa do Estado do Rio Grande do Sul(FAPERGS)-FAPERGS/PRONEX,and FAPERGS/PRONEM,Coordenao de Aperfeioamento de Pessoal de Nível Superior,Conselho Nacional de Desenvolvimento Científico e Tecnológico,Financiadora de Estudos e Projetos
文摘AIM: To determine the plasmatic iron content and evaluate the oxidative stress(OS) markers in subjects receiving blood therapy.METHODS: Thirty-nine individuals with unspecified anemia receiving blood transfusions and 15 healthy subjects were included in the study. Anemic subjects were divided into three subgrou P:(1) those that received up to five blood transfusions(n = 14);(2) those that received from five to ten transfusions(n = 11); and(3) those that received more than ten transfusions(n = 14). Blood samples were collected by venous arm puncture and stored in tubes containing heparin. The plasma and cells were separated by centrifugation and subsequently used for analyses. Statistical analyses were performed using Kruskal-Wallis analysis of variance followed by Dunn's multiple comparison tests when appropriate.RESULTS: The eletrophoretic hemoglobin profiles of the subjects included in this study indicated that no patients presented with hemoglobinopathy. Labile plasmatic iron, ferritin, protein carbonyl, thiobarbituric acidreactive substances(TBARS) and dichlorofluorescein diacetate oxidation were significantly higher(P < 0.05), whereas total thiol levels were significantly lower(P < 0.05) in transfused subjects compared to controls. Additionally, the activity of catalase, superoxide dismutase and glutathione peroxidase were significantly lower in the transfused subjects(P < 0.05). Antioxidant enzyme activities and total thiol levels were positively correlated(P < 0.05), and negatively correlated with the levels of protein carbonyl and TBARS(P < 0.05). In contrast, protein carbonyl and TBARS were positively correlated(P < 0.05). Altogether, these data confirm the involvement of OS in patients following therapy with repeated blood transfusions.CONCLUSION: Our data reveal that changes in OS markers are correlated with levels of labile plasmatic iron and ferritin and the number of transfusions.