In the present paper, design and analysis of a 2.4 GHz printed dipole antenna for wireless communication applications are presented. Measurements on return loss and radiation pattern of this antenna configuration are ...In the present paper, design and analysis of a 2.4 GHz printed dipole antenna for wireless communication applications are presented. Measurements on return loss and radiation pattern of this antenna configuration are included in this investigation. The printed dipole is combined with the feeding structure of a microstrip via-hole balun and is fabricated on an FR-4 printed-circuit-board substrate. Two inevitable discontinuities are introduced by this antenna architecture in the form of right-angle bends in the microstrip feed line and in the dipole’s gap, respectively. The impact of mitering these bends in the reflection coefficient, resonance bandwidth and radiation pattern of antenna has been investigated by means of simulation and experiment.展开更多
Ultra-Wideband Impulse Radio (UWB-IR) technologies, although are relatively easy in transmission but they present difficulties in reception, in fact the reception of such waveform is a quite complicated matter. The ma...Ultra-Wideband Impulse Radio (UWB-IR) technologies, although are relatively easy in transmission but they present difficulties in reception, in fact the reception of such waveform is a quite complicated matter. The main reason is that in fully digital receiver the received waveform must be sampled at a rate of several GHz. This paper focuses on the impact of the Analog to Digital (A/D) conversion stage that is used to sample the received waveform. More specifically we focus on the impact of the two main parameters that affect the performance of the Software Defined Radio (SDR) system. These parameters are the bit resolution and the time jittering. The influence of these parameters is deeply examined.展开更多
Detail experimental measurements of a 2.4 GHz printed dipole antenna for wireless communication systems is presented and discussed. A group of printed dipoles with integrated balun have been designed and constructed o...Detail experimental measurements of a 2.4 GHz printed dipole antenna for wireless communication systems is presented and discussed. A group of printed dipoles with integrated balun have been designed and constructed on a dielectric substrate. This paper is based on modifications of the known printed dipole architecture. The corresponding printed dipole antennas have differences on their forms that are provided by two essential geometry parameters. The first parameter l is related to the bend on microstrip line that feeds the dipole and the second w corresponds to the form of the dipole’s gap. The impact of these parameters on reflection coefficient and radiation pattern of antenna has been investigated. The corresponding measured results indicate that the return loss and radiation pattern of a printed dipole antenna are independent of the w parameter. Instead, variations in the value of the l parameter in the dipole’s structure affect the form of the corresponding return loss. These observations are very important and provide interesting considerations on affecting design and construction of antenna elements at frequency range of 2.4 GHz.展开更多
Peak to Average Power Ratio (PAPR) is defined as the instantaneous power (maximum value) to the average power ratio. PAPR is considered to be a major problem in OFDM systems. This problem can cause radical unexpected ...Peak to Average Power Ratio (PAPR) is defined as the instantaneous power (maximum value) to the average power ratio. PAPR is considered to be a major problem in OFDM systems. This problem can cause radical unexpected behavior of the signal fluctuation. This fluctuation is constituted by a large number of power states. The enormous number of these states leads to an additional complexity of ADCs and DACs. This research addresses the previous problem in OFDM systems utilizing Turbo Codes. μLaCP technique is employed for the purpose of decreasing PAPR. Moreover, our OFDM system was simulated in the presence of an AWGN channel with four types of codes (without the presence of ADCs and DACs). These were constituted of PCCC (typical and new), SCCC, and Convolutional Codes. Our Turbo Coded OFDM exhibited unchanged BER performance before and after the use of μLaCP technique. This was accomplished by modifying our previous PAPR reduction technique without sacrificing greatly its attributes.展开更多
In this paper we present an experimental validated system for measuring rainfall due to radio frequency (RF) signal attenuation at 2 GHz. Measurements took place in Ioannina, NW Greece, starting in April 2015 and last...In this paper we present an experimental validated system for measuring rainfall due to radio frequency (RF) signal attenuation at 2 GHz. Measurements took place in Ioannina, NW Greece, starting in April 2015 and lasting for twelve months. The primary acquired extensive results have shown reliable and accurate measurements for rainfall amounts smaller than 1 mm for 5 min periods. The very important innovation is that this paper presents significant earth-to-earth measurements due to rainfall attenuation (at 2 GHz) in order to act as a map for future investigation and as a prior knowledge for the behavior of other systems operating at frequencies around S-band.展开更多
文摘In the present paper, design and analysis of a 2.4 GHz printed dipole antenna for wireless communication applications are presented. Measurements on return loss and radiation pattern of this antenna configuration are included in this investigation. The printed dipole is combined with the feeding structure of a microstrip via-hole balun and is fabricated on an FR-4 printed-circuit-board substrate. Two inevitable discontinuities are introduced by this antenna architecture in the form of right-angle bends in the microstrip feed line and in the dipole’s gap, respectively. The impact of mitering these bends in the reflection coefficient, resonance bandwidth and radiation pattern of antenna has been investigated by means of simulation and experiment.
文摘Ultra-Wideband Impulse Radio (UWB-IR) technologies, although are relatively easy in transmission but they present difficulties in reception, in fact the reception of such waveform is a quite complicated matter. The main reason is that in fully digital receiver the received waveform must be sampled at a rate of several GHz. This paper focuses on the impact of the Analog to Digital (A/D) conversion stage that is used to sample the received waveform. More specifically we focus on the impact of the two main parameters that affect the performance of the Software Defined Radio (SDR) system. These parameters are the bit resolution and the time jittering. The influence of these parameters is deeply examined.
文摘Detail experimental measurements of a 2.4 GHz printed dipole antenna for wireless communication systems is presented and discussed. A group of printed dipoles with integrated balun have been designed and constructed on a dielectric substrate. This paper is based on modifications of the known printed dipole architecture. The corresponding printed dipole antennas have differences on their forms that are provided by two essential geometry parameters. The first parameter l is related to the bend on microstrip line that feeds the dipole and the second w corresponds to the form of the dipole’s gap. The impact of these parameters on reflection coefficient and radiation pattern of antenna has been investigated. The corresponding measured results indicate that the return loss and radiation pattern of a printed dipole antenna are independent of the w parameter. Instead, variations in the value of the l parameter in the dipole’s structure affect the form of the corresponding return loss. These observations are very important and provide interesting considerations on affecting design and construction of antenna elements at frequency range of 2.4 GHz.
文摘Peak to Average Power Ratio (PAPR) is defined as the instantaneous power (maximum value) to the average power ratio. PAPR is considered to be a major problem in OFDM systems. This problem can cause radical unexpected behavior of the signal fluctuation. This fluctuation is constituted by a large number of power states. The enormous number of these states leads to an additional complexity of ADCs and DACs. This research addresses the previous problem in OFDM systems utilizing Turbo Codes. μLaCP technique is employed for the purpose of decreasing PAPR. Moreover, our OFDM system was simulated in the presence of an AWGN channel with four types of codes (without the presence of ADCs and DACs). These were constituted of PCCC (typical and new), SCCC, and Convolutional Codes. Our Turbo Coded OFDM exhibited unchanged BER performance before and after the use of μLaCP technique. This was accomplished by modifying our previous PAPR reduction technique without sacrificing greatly its attributes.
文摘In this paper we present an experimental validated system for measuring rainfall due to radio frequency (RF) signal attenuation at 2 GHz. Measurements took place in Ioannina, NW Greece, starting in April 2015 and lasting for twelve months. The primary acquired extensive results have shown reliable and accurate measurements for rainfall amounts smaller than 1 mm for 5 min periods. The very important innovation is that this paper presents significant earth-to-earth measurements due to rainfall attenuation (at 2 GHz) in order to act as a map for future investigation and as a prior knowledge for the behavior of other systems operating at frequencies around S-band.