期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Snowmelt modeling using two melt-rate models in the Urumqi River watershed, Xinjiang Uyghur Autonomous Region, China 被引量:3
1
作者 Muattar SAYDI DING Jian-li +1 位作者 vasit sagan QIN Yan 《Journal of Mountain Science》 SCIE CSCD 2019年第10期2271-2284,共14页
In this paper,the performance of the classic snowmelt runoff model(SRM)is evaluated in a daily discharge simulation with two different melt models,the empirical temperature-index melt model and the energy-based radiat... In this paper,the performance of the classic snowmelt runoff model(SRM)is evaluated in a daily discharge simulation with two different melt models,the empirical temperature-index melt model and the energy-based radiation melt model,through a case study from the data-sparse mountainous watershed of the Urumqi River basin in Xinjiang Uyghur Autonomous Region of China.The classic SRM,which uses the empirical temperature-index method,and a radiation-based SRM,incorporating shortwave solar radiation and snow albedo,were developed to simulate daily runoff for the spring and summer snowmelt seasons from 2005 to 2012,respectively.Daily meteorological and hydrological data were collected from three stations located in the watershed.Snow cover area(SCA)was extracted from satellite images.Solar radiation inputs were estimated based on a digital elevation model(DEM).The results showed that the overall accuracy of the classic SRM and radiation-based SRM for simulating snowmeltdischarge was relatively high.The classic SRM outperformed the radiation-based SRM due to the robust performance of the temperature-index model in the watershed snowmelt computation.No significant improvement was achieved by employing solar radiation and snow albedo in the snowmelt runoff simulation due to the inclusion of solar radiation as a temperature-dependent energy source and the local pattern of snowmelt behavior throughout the melting season.Our results suggest that the classic SRM simulates daily runoff with favorable accuracy and that the performance of the radiation-based SRM needs to be further improved by more ground-measured data for snowmelt energy input. 展开更多
关键词 SNOWMELT RUNOFF Mountainous watershed URUMQI River Temperature Radiation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部