Aqueous binary dopant (ZrOCl2/AgI) is used in different ratio such as 1:1, 1:2 and 2:1 (w/w) for chemical doping to enhance the conductivity of synthesized Poly (o-toluidine) (POT). The doping of Poly (o-toluidine) is...Aqueous binary dopant (ZrOCl2/AgI) is used in different ratio such as 1:1, 1:2 and 2:1 (w/w) for chemical doping to enhance the conductivity of synthesized Poly (o-toluidine) (POT). The doping of Poly (o-toluidine) is carried out using tetrahydrofuran as solvent. Doped samples are characterized using various techniques such as I-V characteristics, UV-Visible spectroscopy, X-ray diffractometry (XRD), FTIR and Photoluminescence (PL) studies. A significant enhancement in DC conductivity has been observed with the introduction of binary dopant. UV-Visible study shows that optical parameters change considerably after doping. Interestingly, both direct and indirect band gaps are observed in the doped samples. XRD patterns show the semi-crystalline nature of doped Poly (o-toluidine). FTIR study shows structural modifications in functional groups with doping in POT. A Photolyminescence spectrum exhibits the emission properties of the samples.展开更多
Chemical modifications by incorporating organic dye molecules in polymethylmethacrylate (PMMA) matrix may open up the possibility of the development of smart materials. In the present work, Kiton red-620 laser dye is ...Chemical modifications by incorporating organic dye molecules in polymethylmethacrylate (PMMA) matrix may open up the possibility of the development of smart materials. In the present work, Kiton red-620 laser dye is embedded in synthesized PMMA matrix by chemical doping process. The spectral investigations of Kiton red-620 doped PMMA matrix has been carried out using FTIR, UV-visible and photoluminescence spectrophotometers. FTIR study showed that the absorption band region 1800 - 1000 cm-1 becomes sharper with the concentration of dye in PMMA matrix. UV-visible and photoluminescence study showed that a slight shifting appears in the absorption spectra, emission spec- tra and intensity of emission peaks as concentration of dye increases in PMMA matrix.展开更多
文摘Aqueous binary dopant (ZrOCl2/AgI) is used in different ratio such as 1:1, 1:2 and 2:1 (w/w) for chemical doping to enhance the conductivity of synthesized Poly (o-toluidine) (POT). The doping of Poly (o-toluidine) is carried out using tetrahydrofuran as solvent. Doped samples are characterized using various techniques such as I-V characteristics, UV-Visible spectroscopy, X-ray diffractometry (XRD), FTIR and Photoluminescence (PL) studies. A significant enhancement in DC conductivity has been observed with the introduction of binary dopant. UV-Visible study shows that optical parameters change considerably after doping. Interestingly, both direct and indirect band gaps are observed in the doped samples. XRD patterns show the semi-crystalline nature of doped Poly (o-toluidine). FTIR study shows structural modifications in functional groups with doping in POT. A Photolyminescence spectrum exhibits the emission properties of the samples.
文摘Chemical modifications by incorporating organic dye molecules in polymethylmethacrylate (PMMA) matrix may open up the possibility of the development of smart materials. In the present work, Kiton red-620 laser dye is embedded in synthesized PMMA matrix by chemical doping process. The spectral investigations of Kiton red-620 doped PMMA matrix has been carried out using FTIR, UV-visible and photoluminescence spectrophotometers. FTIR study showed that the absorption band region 1800 - 1000 cm-1 becomes sharper with the concentration of dye in PMMA matrix. UV-visible and photoluminescence study showed that a slight shifting appears in the absorption spectra, emission spec- tra and intensity of emission peaks as concentration of dye increases in PMMA matrix.