Carbamates are molecules that have different types of biological activities and provide a particular chemical control against ticks. The new structures of the proposed compounds were optimized and synthetized respecti...Carbamates are molecules that have different types of biological activities and provide a particular chemical control against ticks. The new structures of the proposed compounds were optimized and synthetized respectively, through a molecular model using the methods:PM3, HF and DFT applying the B3LYP functional, with the basis 6-31+G(d) and 6-311+G(d,p), BVP86 and PBEPBE with 6-31+G(d) and the vibrational frequencies computed. These calculated frequencies were compared with the experimental ones to determine the most accurate level of theory for the prediction of vibrational frequencies of the compounds. The best results were obtained through HF/631+G(d). Additionally, we report a modification to obtain this type of compounds, and based on the amino-dehalogenation of ethyl chloroformate, different benzyl ethyl carbamates were synthesized modifying the base molecule. The performances obtained were compared to others already reported. The methodology used allowed us to synthesize new carbamates using benzylamine derivatives through a modification on the basic catalysis of the addition-elimination reaction.展开更多
基金Proyect:PAPIIT IT200817PAPIIT No 202015Catedra PIAPI1607:Diseno de moleculas bioativas.
文摘Carbamates are molecules that have different types of biological activities and provide a particular chemical control against ticks. The new structures of the proposed compounds were optimized and synthetized respectively, through a molecular model using the methods:PM3, HF and DFT applying the B3LYP functional, with the basis 6-31+G(d) and 6-311+G(d,p), BVP86 and PBEPBE with 6-31+G(d) and the vibrational frequencies computed. These calculated frequencies were compared with the experimental ones to determine the most accurate level of theory for the prediction of vibrational frequencies of the compounds. The best results were obtained through HF/631+G(d). Additionally, we report a modification to obtain this type of compounds, and based on the amino-dehalogenation of ethyl chloroformate, different benzyl ethyl carbamates were synthesized modifying the base molecule. The performances obtained were compared to others already reported. The methodology used allowed us to synthesize new carbamates using benzylamine derivatives through a modification on the basic catalysis of the addition-elimination reaction.