期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Zinc phosphate-based nanoparticles as a novel antibacterial agent: in vivo study on rats after dietary exposure 被引量:1
1
作者 Pavel Horky Sylvie Skalickova +18 位作者 Lenka Urbankova Daria Baholet Silvia Kociova Zuzana Bytesnikova Eliska Kabourkova Zuzana Lackova Natalia Cernei Milica Gagic vedran milosavljevic Vendula Smolikova Eva Vaclavkova Pavel Nevrkla Pavel Knot Olga Krystofova David Hynek Pavel Kopel Jiri Skladanka Vojtech Adam Kristyna Smerkova 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2019年第2期463-474,共12页
Background: Development of new nanomaterials that inhibit or kil bacteria is an important and timely research topic. For example, financial losses due to infectious diseases, such as diarrhea, are a major concern in l... Background: Development of new nanomaterials that inhibit or kil bacteria is an important and timely research topic. For example, financial losses due to infectious diseases, such as diarrhea, are a major concern in livestock productions around the world. Antimicrobial nanoparticles(NPs) represent a promising alternative to antibiotics and may lower antibiotic use and consequently spread of antibiotic resistance traits among bacteria, including pathogens.Results: Four formulations of zinc nanoparticles(Zn A, Zn B, Zn C, and Zn D) based on phosphates with spherical(Zn A, Zn B)or irregular(Zn C, Zn D) morphology were prepared. The highest in vitro inhibitory effect of our NPs was observed against Staphylococcus aureus(inhibitory concentration values, IC50, ranged from 0.5 to 1.6 mmol/L), fol owed by Escherichia coli(IC500.8–1.5 mmol/L). In contrast, methicil in resistant S. aureus(IC501.2–4.7 mmol/L) was least affected and this was similar to inhibitory patterns of commercial Zn O-based NPs and Zn O. After the successful in vitro testing, the in vivo study with rats based on dietary supplementation with zinc NPs was conducted. Four groups of rats were treated by 2,000 mg Zn/kg diet of Zn A, Zn B, Zn C, and Zn D, for comparison two groups were supplemented by 2,000 mg Zn/kg diet of Zn O-N and Zn O, and one group(control) was fed only by basal diet. The significantly higher(P < 0.05) Zn level in liver and kidney of al treated groups was found, nevertheless Zn NPs did not greatly influence antioxidant status of rats. However,the total aerobic and coliform bacterial population in rat feces significantly decreased(P < 0.05) in al zinc groups after 30 d of the treatment. Furthermore, when compared to the Zn O group, Zn A and Zn C nanoparticles reduced coliforms significantly more(P < 0.05).Conclusions: Our results demonstrate that phosphate-based zinc nanoparticles have the potential to act as antibiotic agents. 展开更多
关键词 AEROBIC bacteria ANTIBIOTICS COLIFORMS NANOMATERIALS OXIDATIVE stress
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部