Field equations in the presence of perfect fluid distribution are obtained in a scalar tensor theory of gravitation proposed by Brans and Dicke[1] with the aid of Bianchi type-II, VIII & IX metrics. Exact prefect ...Field equations in the presence of perfect fluid distribution are obtained in a scalar tensor theory of gravitation proposed by Brans and Dicke[1] with the aid of Bianchi type-II, VIII & IX metrics. Exact prefect fluid Bianchi type- IX cosmological model is presented since other models doesn’t exist in Brans-Dicke scalar tensor theory of gravitation. Some physical properties of the model are also discussed.展开更多
Using the Lie algebraic method the vibrational frequencies of 97 resonances Raman lines (A1g + B1g + A2g + B2g) and 38 infrared bands (Eu) of octaethylporphyrinato-Ni (II) and its mesodeuterated and 15N-substituted de...Using the Lie algebraic method the vibrational frequencies of 97 resonances Raman lines (A1g + B1g + A2g + B2g) and 38 infrared bands (Eu) of octaethylporphyrinato-Ni (II) and its mesodeuterated and 15N-substituted derivates and Fullerenes C60 and Cv70 of 7 vibrational bands are calculated using U(2) algebraic Hamiltonian with four fitting algebraic parameters. The results obtained by the algebraic technique have been compared with experimental data;and they show great accuracy.展开更多
文摘Field equations in the presence of perfect fluid distribution are obtained in a scalar tensor theory of gravitation proposed by Brans and Dicke[1] with the aid of Bianchi type-II, VIII & IX metrics. Exact prefect fluid Bianchi type- IX cosmological model is presented since other models doesn’t exist in Brans-Dicke scalar tensor theory of gravitation. Some physical properties of the model are also discussed.
文摘Using the Lie algebraic method the vibrational frequencies of 97 resonances Raman lines (A1g + B1g + A2g + B2g) and 38 infrared bands (Eu) of octaethylporphyrinato-Ni (II) and its mesodeuterated and 15N-substituted derivates and Fullerenes C60 and Cv70 of 7 vibrational bands are calculated using U(2) algebraic Hamiltonian with four fitting algebraic parameters. The results obtained by the algebraic technique have been compared with experimental data;and they show great accuracy.