期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
FSM Based DFS Link for Network on Chip
1
作者 Erulappan Sakthivel veluchamy malathi +1 位作者 Muruganantham Arunraja Govinndaraj Perumalvignesh 《Circuits and Systems》 2016年第8期1734-1750,共17页
As low power consumption is the main design issue involved in a network on chip (NoC), researchers are concentrating more on both algorithms and architectural approaches. The conventional Dynamic Frequency Scalin... As low power consumption is the main design issue involved in a network on chip (NoC), researchers are concentrating more on both algorithms and architectural approaches. The conventional Dynamic Frequency Scaling (DFS) and history based Frequency Scaling (HDFS) algorithms are utilized to process the energy constrained data traffic. However, these conventional algorithms achieve higher energy efficiencies, and they result in performance degradation due to the auxiliary latency between clock domains. In this paper, we present a variable power optimization interface for NoC using a Finite State Machine (FSM) approach to attain better performance improvement. The parameters are estimated using 45 nm TSMCCMOS technology. In comparison with DFS system, the evaluation results show that FSM-DFS link achieves 81.55% dynamic power savings on the links in the on-chip network, and 37.5% leakage power savings of the link. Also, this proposed work is evaluated for various performance parameters and compared with conventional work. The simulation results are superior to conventional work. 展开更多
关键词 Network-on-Chip (NoC) Dynamic Frequency Scaling (DFS) Finite State Machines (FSM)
下载PDF
VELAN: Variable Energy Aware Sense Amplifier Link for Asynchronous Network on Chip
2
作者 Erulappan Sakthivel veluchamy malathi Muruganantham Arunraja 《Circuits and Systems》 2016年第3期128-144,共17页
A real time multiprocessor chip paradigm is also called a Network-on-Chip (NoC) which offers a promising architecture for future systems-on-chips. Even though a lot of Double Tail Sense Amplifiers (DTSA) are used in a... A real time multiprocessor chip paradigm is also called a Network-on-Chip (NoC) which offers a promising architecture for future systems-on-chips. Even though a lot of Double Tail Sense Amplifiers (DTSA) are used in architectural approach, the conventional DTSA with transceiver exhibits a difficulty of consuming more energy and latency than its intended design during heavy traffic condition. Variable Energy aware sense amplifier Link for Asynchronous NoC (VELAN) is designed in this research to eliminate the difficulty, which is the combination of Variable DTSA circuitry (V-DTSA) and Transceiver. The V-DTSA circuitry has following components such as bootable DTSA (B-DTSA) and bootable clock gating DTSA (BCG-DTSA), Graph theory based Traffic Estimator (GTE) and controller. Depending upon the traffic rate, the controller activates necessary DTSA modules and transfers information to the receiver. The proposed VELAN design is evaluated on TSMC 90 nm technology, showing 6.157 Gb/s data rate, 0.27 w total link power and 354 ps latency for single stage operation. 展开更多
关键词 Network-on-Chip (NoC) Double Tail Sense Amplifier (DTSA) Clock Gating (CG)
下载PDF
CELLA: FPGA Based Candidate Execution with Low Latency Approach for Soft MIMO Detector
3
作者 Erulappan Sakthivel Kasinathan Pounraj +2 位作者 veluchamy malathi Muruganantham Arunraja Govindaraj Perumalvignnesh 《Circuits and Systems》 2016年第8期1760-1768,共9页
This paper describes the design and Field Programmable Gate Array (FPGA) based 4 × 4 breadth heuristic Multiple-Input—Multiple-Output (MIMO) decoder using 16 and 64 Quadrature Amplitude Modulation (QAM) schemes.... This paper describes the design and Field Programmable Gate Array (FPGA) based 4 × 4 breadth heuristic Multiple-Input—Multiple-Output (MIMO) decoder using 16 and 64 Quadrature Amplitude Modulation (QAM) schemes. The intention of this work is to observe the performance of Candidate Execution with Low Latency Approach for soft MIMO detector in FPGA (CELLA). The Smart Ordering and Candidate Adding (SOCA), Parallel Candidate Adding (PCA) and Backward Candidate Adding (BCA) give better performance in terms of Bit Error Rate (BER) or chip level service. In order to attain both BER and FPGA level performance in a single system, CELLA is developed in this work. Simulation and experimental results demonstrate the effectiveness of the proposed work under the system 4 × 4 MIMO-OFDM employing 16 QAM and 64 QAM. The proposed experiment is implemented in Xilinx Virtex 5 C5VSX240T. The performance results, in terms of FPGA level 76% slice reduction, 58.76% throughput improvement, 75% power reduction and 87% latency reduction, are achieved. The BER performance is observed and compared with the conventional algorithms. Thus, the proposed work achieves better outcome than the conventional work. 展开更多
关键词 Multiple-Input—Multiple-Output (MIMO) Field Programmable Gate Array Parallel Candidate Adding
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部