The increasingly rapid development of the disciplines of petroleum engineering and petroleum geology has led to new methodologies and interpretation techniques forming new knowledge that should be offered quickly and ...The increasingly rapid development of the disciplines of petroleum engineering and petroleum geology has led to new methodologies and interpretation techniques forming new knowledge that should be offered quickly and efficiently to modern engineers and geologists. This need is equally important for students as well as for young professionals. Access and training to all scientific information is necessary to ensure success in their future careers. Today, e-learning has become a common medium for the management and distribution of on-line educational content. Learning Management Systems (LMSs) were not only developed to handle a large variety of multimedia content that provides an organized knowledge repository used to accelerate access to information and skill acquisition; but, LMSs can also keep detailed statistics on the use of the available material offering a powerful training and educational tool. In this document, the Petroleum Knowledge Tutorial System, an LMS platform offering a variety of online educational and training options to petroleum engineers and geologists, is presented. It was created using Moodle, open- source software that can be used to create on-line courses. The platform covers fundamental educational concepts in a structured way. It follows an optimized "workflow" that can be applied not only to solve a specific exercise but also any similar problem encountered over the course of one's career. The platform was designed to offer a repository of learning material in various forms and to favor user-platform interactions. It can be used for training and evaluation purposes through exercises and problem solving that the user can perform online by using browsing software along with internet access. Special tools were created and implemented on the platform to assist the user in completing a variety of tasks including performing exercises involving calculations with given data and plots of points or lines on graphs without leaving the learning environment. Furthermore, videos with detailed explanations follow each learning module and provide the full solution to every exercise. The LMS automatically keeps a large statistical database including the users' access to activities on the platform that can be exported and further processed to improve the platform functionality and evaluate the users' performance.展开更多
The finite volume method has been successfully applied in several engineering fields and has shown outstanding performance in fluid dynamics simulation. In this paper, the general framework for the simulation ofnear-w...The finite volume method has been successfully applied in several engineering fields and has shown outstanding performance in fluid dynamics simulation. In this paper, the general framework for the simulation ofnear-wellbore systems using the finite volume method is described. The mathematical model and the numerical model developed by the authors are presented and discussed. A radial geometry in the vertical plane was implemented so as to thoroughly describe near-wellbore phenomena. The model was then used to simulate injection tests in an oil reservoir through a horizontal well and proved very powerful to correctly reproduce the transient pressure behavior. The reason for this is the robustness of the method, which is independent of the gridding options because the discretization is performed in the physical space. The model is able to describe the phenomena taking place in the reservoir even in complex situations, i.e. in the presence of heterogeneities and permeability barriers, demonstrating the flexibility of the finite volume method when simulating non-conventional tests. The results are presented in comparison with those obtained with the finite difference numerical approach and with analytical methods, if possible.展开更多
文摘The increasingly rapid development of the disciplines of petroleum engineering and petroleum geology has led to new methodologies and interpretation techniques forming new knowledge that should be offered quickly and efficiently to modern engineers and geologists. This need is equally important for students as well as for young professionals. Access and training to all scientific information is necessary to ensure success in their future careers. Today, e-learning has become a common medium for the management and distribution of on-line educational content. Learning Management Systems (LMSs) were not only developed to handle a large variety of multimedia content that provides an organized knowledge repository used to accelerate access to information and skill acquisition; but, LMSs can also keep detailed statistics on the use of the available material offering a powerful training and educational tool. In this document, the Petroleum Knowledge Tutorial System, an LMS platform offering a variety of online educational and training options to petroleum engineers and geologists, is presented. It was created using Moodle, open- source software that can be used to create on-line courses. The platform covers fundamental educational concepts in a structured way. It follows an optimized "workflow" that can be applied not only to solve a specific exercise but also any similar problem encountered over the course of one's career. The platform was designed to offer a repository of learning material in various forms and to favor user-platform interactions. It can be used for training and evaluation purposes through exercises and problem solving that the user can perform online by using browsing software along with internet access. Special tools were created and implemented on the platform to assist the user in completing a variety of tasks including performing exercises involving calculations with given data and plots of points or lines on graphs without leaving the learning environment. Furthermore, videos with detailed explanations follow each learning module and provide the full solution to every exercise. The LMS automatically keeps a large statistical database including the users' access to activities on the platform that can be exported and further processed to improve the platform functionality and evaluate the users' performance.
文摘The finite volume method has been successfully applied in several engineering fields and has shown outstanding performance in fluid dynamics simulation. In this paper, the general framework for the simulation ofnear-wellbore systems using the finite volume method is described. The mathematical model and the numerical model developed by the authors are presented and discussed. A radial geometry in the vertical plane was implemented so as to thoroughly describe near-wellbore phenomena. The model was then used to simulate injection tests in an oil reservoir through a horizontal well and proved very powerful to correctly reproduce the transient pressure behavior. The reason for this is the robustness of the method, which is independent of the gridding options because the discretization is performed in the physical space. The model is able to describe the phenomena taking place in the reservoir even in complex situations, i.e. in the presence of heterogeneities and permeability barriers, demonstrating the flexibility of the finite volume method when simulating non-conventional tests. The results are presented in comparison with those obtained with the finite difference numerical approach and with analytical methods, if possible.