期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Understanding Spatial Genome Organization:Methods and Insights 被引量:4
1
作者 vijay ramani Jay Shendure Zhijun Duan 《Genomics, Proteomics & Bioinformatics》 SCIE CAS CSCD 2016年第1期7-20,共14页
The manner by which eukaryotic genomes are packaged into nuclei while maintaining crucial nuclear functions remains one of the fundamental mysteries in biology. Over the last ten years, we have witnessed rapid advance... The manner by which eukaryotic genomes are packaged into nuclei while maintaining crucial nuclear functions remains one of the fundamental mysteries in biology. Over the last ten years, we have witnessed rapid advances in both microscopic and nucleic acid-based approaches to map genome architecture, and the application of these approaches to the dissection of higher- order chromosomal structures has yielded much new information. It is becoming increasingly clear, for example, that interphase chromosomes form stable, multilevel hierarchical structures. Among them, self-associating domains like so-called topologically associating domains (TADs) appear to be building blocks for large-scale genomic organization. This review describes features of these broadly-defined hierarchical structures, insights into the mechanisms underlying their formation, our current understanding of how interactions in the nuclear space are linked to gene regulation, and important future directions for the field. 展开更多
关键词 CHROMATIN ChromosomeEpigenomics 4D nucleomeHi-C
原文传递
β-Nickel hydroxide cathode material for nano-suspension redox flow batteries
2
作者 Yue LI Cheng HE +4 位作者 Javier PARRONDO vijay ramani Elena V. TIMOFEEVA Yujia DING Carlo SEGRE 《Frontiers in Energy》 SCIE CSCD 2017年第3期401-409,共9页
As part of an effort to build a prototype flow battery system using a nano-suspension containing β-Ni(OH)2 nanoparticles as the cathode material, nano-sized β-Ni(OH)2 particles with well-controlled particle size... As part of an effort to build a prototype flow battery system using a nano-suspension containing β-Ni(OH)2 nanoparticles as the cathode material, nano-sized β-Ni(OH)2 particles with well-controlled particle size and morphology were synthesized via the one-step precipitation of a NiCl2 precursor. The composition and morphology of the nanoparticles were characterized by scanning electronic microscopy (SEM) and X-ray diffraction (XRD). The XRD patterns confirmed that β-Ni(OH)2 was successfully synthesized, while SEM results showed that the particle sizes range from 70 to 150 nm. To ensure that Ni(OH)2 could be employed in the nano-suspension flow battery, the electrochemical performance of the synthesized 13-Ni(OH)2 was initially tested in pouch cells through charge/discharge cycling. The phase transformations occurring during charge/discharge were investigated using in-situ X-ray absorption spectroscopy to obtain the shift in the oxidation state of Ni (X-ray adsorption near edge structure, XANES) and the distances between Ni and surrounding atoms in charged and discharged states (extended X-ray absorption fine structure, EXAFS). XANES results indicated that the electrode in the discharged state was a mixture of phases because the edge position did not shift back completely. XAFS results further proved that the discharge capacity was provided by β-NiOOH and the ratio between β-Ni(OH)2 and γ-NiOOH in the electrode in the discharged state was 71:29. Preliminary nano-suspension tests in a lab-scale cell were conducted to understand the behavior of the nano-suspension during charge/discharge cycling and to optimize the operating conditions. 展开更多
关键词 nano-suspension flow battery β-Ni(OH)2 scanning electronic microscopy (SEM) X-ray diffraction(XRD) X-ray adsorption near edge structure (XANES) extended X-ray absorption fine structure (EXAFS)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部