Bipyridylporphyrin derivatives possessing a porphyrin moiety as the electron donor and bipyridyl moiety as the electron-acceptor were designed and synthesized for dye-sensitized solar cells (DSSCs). The photo- physi...Bipyridylporphyrin derivatives possessing a porphyrin moiety as the electron donor and bipyridyl moiety as the electron-acceptor were designed and synthesized for dye-sensitized solar cells (DSSCs). The photo- physical and electrochemical properties were investigated by absorption spectrometry and cyclic voltam- metry. Density functional theory (DFT) was employed to study electron distribution. From the photovoltaic performance measurements, a maximum conversion efficiency (η) of 0.38% was achieved based on the bipyridylporphyrin ruthenium dye A7 (Jsc = 1.33 mA/cm^2, Voc = 0.45 V, FF = 0.64) under 1,5 irradiation (100 mW/cm^2).展开更多
基金financially supported by the National Science and Technology Development Agency (BT-B-01-A5-09-5202)the Thailand Research Fund (TRF) under the Golden Jubilee Ph.D. Program (Duanglaor P.,Grant No.PHD/0226/2549+1 种基金3.C.CU/49/W.1)Rachadapiseksompot Endowment Fund of Chulalongkorn University for postdoctoral fellowship (Thiampanya P.)
文摘Bipyridylporphyrin derivatives possessing a porphyrin moiety as the electron donor and bipyridyl moiety as the electron-acceptor were designed and synthesized for dye-sensitized solar cells (DSSCs). The photo- physical and electrochemical properties were investigated by absorption spectrometry and cyclic voltam- metry. Density functional theory (DFT) was employed to study electron distribution. From the photovoltaic performance measurements, a maximum conversion efficiency (η) of 0.38% was achieved based on the bipyridylporphyrin ruthenium dye A7 (Jsc = 1.33 mA/cm^2, Voc = 0.45 V, FF = 0.64) under 1,5 irradiation (100 mW/cm^2).