Novel tetra-methoxy resorcinarene tetra-hydrazide(TMRTH) has been synthesized and used as a reducing agent and a capping agent for the synthesis of water-dispersible stable palladium nanoparticles(PdNPs).The TMRTH...Novel tetra-methoxy resorcinarene tetra-hydrazide(TMRTH) has been synthesized and used as a reducing agent and a capping agent for the synthesis of water-dispersible stable palladium nanoparticles(PdNPs).The TMRTH-PdNPs were characterized by UV-Vis spectroscopy,transmission electron microscopy,energy-dispersive X-ray spectroscopy,and powder X-ray diffraction.The synthesized nanoparticles are polydispersible with a size of 5 ± 2 nm and were found to be recyclable over five cycles maintaining a catalytic activity in the Suzuki-Miyuara cross-coupling reaction.The nanocatalyst was superior in catalytic performance to conventional palladium catalysts with respect to reaction time,catalyst loading and recyclability.TMRTH-PdNPs show promise for their use in biological applications as they exhibit good antibacterial activity against gram-positive bacteria.展开更多
基金financial assistance provided by UGC(University Grant Commission)DRDO (Defence Research Development Organisation),New Delhi
文摘Novel tetra-methoxy resorcinarene tetra-hydrazide(TMRTH) has been synthesized and used as a reducing agent and a capping agent for the synthesis of water-dispersible stable palladium nanoparticles(PdNPs).The TMRTH-PdNPs were characterized by UV-Vis spectroscopy,transmission electron microscopy,energy-dispersive X-ray spectroscopy,and powder X-ray diffraction.The synthesized nanoparticles are polydispersible with a size of 5 ± 2 nm and were found to be recyclable over five cycles maintaining a catalytic activity in the Suzuki-Miyuara cross-coupling reaction.The nanocatalyst was superior in catalytic performance to conventional palladium catalysts with respect to reaction time,catalyst loading and recyclability.TMRTH-PdNPs show promise for their use in biological applications as they exhibit good antibacterial activity against gram-positive bacteria.