期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Spatiotemporal variations of sand hydraulic conductivity by microbial application methods
1
作者 viroon kamchoom Thiti Khattiwong +2 位作者 Treesukon Treebupachatsakul Suraparb Keawsawasvong Anthony Kwan Leung 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期268-278,共11页
The spatiotemporal distributions of microbes in soil by different methods could affect the efficacy of the microbes to reduce the soil hydraulic conductivity.In this study,the specimens of bio-mediated sands were prep... The spatiotemporal distributions of microbes in soil by different methods could affect the efficacy of the microbes to reduce the soil hydraulic conductivity.In this study,the specimens of bio-mediated sands were prepared using three different methods,i.e.injecting,mixing,and pouring a given microbial so-lution onto compacted sand specimens.The hydraulic conductivity was measured by constant-head tests,while any soil microstructural changes due to addition of the microbes were observed by scan-ning electron microscope(SEM)and mercury intrusion porosimetry(MIP)tests.The amount of dextran concentration produced by microbes in each type of specimen was quantified by a refractometer.Results show that dextran production increased exponentially after 5-7 d of microbial settling with the supply of culture medium.The injection and mixing methods resulted in a similar amount and uniform dis-tribution of dextran in the specimens.The pouring method,however,produced a nonuniform distri-bution,with a higher concentration near the specimen surface.As the supply of culture medium discontinued,the dextran content near the surface produced by the pouring method decreased dramatically due to high competition for nutrients with foreign colonies.Average dextran concentration was negatively and correlated with hydraulic conductivity of bio-mediated soils exponentially,due to the clogging of large soil pores by dextran.The hydraulic conductivity of the injection and mixing cases did not change significantly when the supply of culture medium was absent. 展开更多
关键词 Bio-mediated soil DEXTRAN Hydraulic conductivity Leuconostoc mesenteroides Microbial application MICROSTRUCTURE
下载PDF
Rectangular tunnel heading stability in three dimensions and its predictive machine learning models
2
作者 Jim Shiau Suraparb Keawsawasvong +3 位作者 Van Qui Lai Thanachon Promwichai viroon kamchoom Rungkhun Banyong 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第11期4683-4696,共14页
Tunnel heading stability in two dimensions(2D)has been extensively investigated by numerous scholars in the past decade.One significant limitation of 2D analysis is the absence of actual tunnel geometry modeling with ... Tunnel heading stability in two dimensions(2D)has been extensively investigated by numerous scholars in the past decade.One significant limitation of 2D analysis is the absence of actual tunnel geometry modeling with a considerable degree of idealization.Nevertheless,it is possible to study the stability of tunnels in three dimensions(3D)with a rectangular shape using finite element limit analysis(FELA)and a nonlinear programming technique.This paper employs 3D FELA to generate rigorous solutions for stability numbers,failure mechanisms,and safety factors for rectangular-shaped tunnels.To further explore the usefulness of the produced results,multivariate adaptive regression spline(MARS)is used for machine learning of big dataset and development of design equations for practical design applications.The study should be of great benefit to tunnel design practices using the developed equations provided in the paper. 展开更多
关键词 Wide rectangular tunnel Finite element limit analysis(FELA) Multivariate adaptive regression spline(MARS) Three dimensions(3D) Stability analysis
下载PDF
Permeability and setting time of bio-mediated soil under various medium concentrations 被引量:4
3
作者 Treesukon Treebupachatsakul viroon kamchoom 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2021年第2期401-409,共9页
The bio-clogging using bacteria can be an eco-friendly and sustainable alternative to conventional grouting methods for seepage control.However,it remains unclear to date how the dilute concentration of bacterium and ... The bio-clogging using bacteria can be an eco-friendly and sustainable alternative to conventional grouting methods for seepage control.However,it remains unclear to date how the dilute concentration of bacterium and medium during field installation can affect the setting time of bacterium and its correlation with permeability reduction.In this study,the setting time of bacterium and its effectiveness in permeability reduction were addressed through experimental and theoretical investigations.A series of sand column was cultivated using different concentrations of Leuconostoc mesenteroides and culture medium.The distribution and composition of the bacterial product(i.e.dextran)were observed by refractometer,scanning electron microscope(SEM),and energy dispersive X-ray spectroscopy(EDS).Soil permeability was recorded using a constant head test.The results revealed that bacterium was effective to produce dextran at the setting time of about 5 d after installation.This dextran can reduce the permeability of bio-mediated soil by two orders of magnitude,even without culture medium supply.In general,the dextran production decreased proportionally with increase of bacterium and medium concentration.However,at 50%bacterium and medium concentration by weight,it still has a significant influence on permeability reduction with similar setting time,compared to 100%concentration. 展开更多
关键词 Bio-clogging Bio-mediated soil Medium concentration Leuconostoc mesenteroides PERMEABILITY Setting time
下载PDF
Influence of soil density on gas permeability and water retention in soils amended with in-house produced biochar 被引量:4
4
作者 Ankit Garg He Huang +6 位作者 Weiling Cai Narala Gangadhara Reddy Peinan Chen Yifan Han viroon kamchoom Shubham Gaurav Hong-Hu Zhu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2021年第3期593-602,共10页
Biochar has been used as an environment-friendly enhancer to improve the hydraulic properties(e.g.suction and water retention)of soil.However,variations in densities alter the properties of the soil ebiochar mix.Such ... Biochar has been used as an environment-friendly enhancer to improve the hydraulic properties(e.g.suction and water retention)of soil.However,variations in densities alter the properties of the soil ebiochar mix.Such density variations are observed in agriculture(loosely compacted)and engineering(densely compacted)applications.The influence of biochar amendment on gas permeability of soil has been barely investigated,especially for soil with different densities.The major objective of this study is to investigate the water retention capacity,and gas permeability of biochar-amended soil(BAS)with different biochar contents under varying degree of compaction(DOC)conditions.In-house produced novel biochar was mixed with the soil at different amendment rates(i.e.biochar contents of 0%,5%and 10%).All BAS samples were compacted at three DOCs(65%,80%and 95%)in polyvinyl chloride(PVC)tubes.Each soil column was subjected to dryingewetting cycles,during which soil suction,water content,and gas permeability were measured.A simplified theoretical framework for estimating the void ratio of BAS was proposed.The experimental results reveal that the addition of biochar significantly decreased gas permeability kg as compared with that of bare soil(BS).However,the addition of 5%biochar is found to be optimum in decreasing kg with an increase of DOC(i.e.k_(g,65%)>k_(g,80%)>k_(g,95%))at a relatively low suction range(<200 kPa)because both biochar and compaction treatment reduce the connected pores. 展开更多
关键词 BIOCHAR Degree of compaction(DOC) Gas permeability Soil water retention Wettingedrying cycle
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部