In this paper, an adaptive subcarrier allocation scheme with reconfiguration of operating parameters for Cognitive Radio Networks (CRN) is presented. A QoS-conscious spectrum decision frame work is projected, where sp...In this paper, an adaptive subcarrier allocation scheme with reconfiguration of operating parameters for Cognitive Radio Networks (CRN) is presented. A QoS-conscious spectrum decision frame work is projected, where spectrum bands are determined by considering the application requirements as well as the dynamic nature of the spectrum bands. The novel subcarrier allocation algorithm is developed to fulfill different performance objective as a solution for subcarrier allocation and power allocation problem for Cognitive Radio (CR) users in CRNs. It employs operating frequency parameter modification using Proportional Resource Algorithm and Genetic Algorithm (GA). The multi objective optimization problem with equality and inequality constraint is considered. Moreover, a dynamic subcarrier allocations scheme is developed based on GA to decide on the spectrum bands adaptively dependent on the time-varying CR network capacity. The proposed algorithm targets to achieve maximum data rate for each subcarrier, maximize the overall network throughput and maximize the number of satisfied user under the constraints of bandwidth and guarantee Quality of Service (QoS) requirement from dynamic spectrum management (DSM) perspective. Moreover, it determines the best available channel.展开更多
文摘In this paper, an adaptive subcarrier allocation scheme with reconfiguration of operating parameters for Cognitive Radio Networks (CRN) is presented. A QoS-conscious spectrum decision frame work is projected, where spectrum bands are determined by considering the application requirements as well as the dynamic nature of the spectrum bands. The novel subcarrier allocation algorithm is developed to fulfill different performance objective as a solution for subcarrier allocation and power allocation problem for Cognitive Radio (CR) users in CRNs. It employs operating frequency parameter modification using Proportional Resource Algorithm and Genetic Algorithm (GA). The multi objective optimization problem with equality and inequality constraint is considered. Moreover, a dynamic subcarrier allocations scheme is developed based on GA to decide on the spectrum bands adaptively dependent on the time-varying CR network capacity. The proposed algorithm targets to achieve maximum data rate for each subcarrier, maximize the overall network throughput and maximize the number of satisfied user under the constraints of bandwidth and guarantee Quality of Service (QoS) requirement from dynamic spectrum management (DSM) perspective. Moreover, it determines the best available channel.