期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Dynamic phase transition behavior of a LiMn_(0.5)Fe_(0.5)PO_(4) olivine cathode material for lithium-ion batteries revealed through in-situ X-ray techniques 被引量:5
1
作者 Sujeera Pleuksachat Phongsit Krabao +6 位作者 Sarawut Pongha viyada harnchana Pawinee Klangtakai Wanwisa Limphirat Siriwat Soontaranon Jeffrey Nash Nonglak Meethong 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第8期452-459,I0012,共9页
LiMn_(0.5)Fe_(0.5)PO_(4) has attracted great interest due to its good electrochemical performance and higher operating voltages.This has led to a greater than 30 percent higher energy density than for commercial Li Fe... LiMn_(0.5)Fe_(0.5)PO_(4) has attracted great interest due to its good electrochemical performance and higher operating voltages.This has led to a greater than 30 percent higher energy density than for commercial Li Fe PO4 olivine cathodes.Understanding the phase transition behaviors and kinetics of this material will help researchers to design and develop next generation cathodes for Li-ion batteries.In this study,we investigated non-equilibrium phase transition behaviors in a LiMn_(0.5)Fe_(0.5)PO_(4) cathode material during charge–discharge processes by varying current rates(C-rates)using synchrotron in-situ X-ray techniques.These methods included wide angle X-ray scattering(in-situ WAXS)and X-ray absorption spectroscopy(in-situ XAS).The WAXS spectra indicate that the phase transition of LiMn_(0.5)Fe_(0.5)PO_(4) material at slow C-rates is induced by a two-phase reaction.In contrast,at a high C-rate(5 C),the formation of an intermediate phase upon discharge is clearly observed.Concurrently,the oxidation numbers of the redox reactions of Fe^(2+)/Fe^(3+)and Mn^(2+)/Mn^(3+)were evaluated using in-situ XAS.This combination of synchrotron in-situ X-ray techniques gives clear insights into the non-equilibrium phase transition behavior of a LiMn_(0.5)Fe_(0.5)PO_(4) cathode material.This new understanding will be useful for further developments of this highly promising cathode material for practical commercialization. 展开更多
关键词 LiMn_(0.5)Fe_(0.5)PO_(4) Phase transition In-situ X-ray techniques
下载PDF
Enhancement of output power density in a modified polytetrafluoroethylene surface using a sequential O_(2)/Ar plasma etching for triboelectric nanogenerator applications
2
作者 Teerayut Prada viyada harnchana +6 位作者 Anthika Lakhonchai Artit Chingsungnoen Phitsanu Poolcharuansin Narong Chanlek Annop Klamchuen Prasit Thongbai Vittaya Amornkitbamrung 《Nano Research》 SCIE EI CSCD 2022年第1期272-279,共8页
In this work,the surface modification using a two-steps plasma etching has been developed for enhancing energy conversion performance in polytetrafluoroethylene(PTFE)triboelectric nanogenerator(TENG).Enhancing surface... In this work,the surface modification using a two-steps plasma etching has been developed for enhancing energy conversion performance in polytetrafluoroethylene(PTFE)triboelectric nanogenerator(TENG).Enhancing surface area by a powerful O_(2) and Ar bipolar pulse plasma etching without the use of CF_(4) gas has been demonstrated for the first time.TENG with modified surface PTFE using a sequential two-step O_(2)/Ar plasma has a superior power density of 9.9 W·m^(-2),which is almost thirty times higher than that of a pristine PTFE TENG.The synergistic combination of high surface area and charge trapping sites due to chemical bond defects achieved from the use of a sequential O_(2)/Ar plasma gives rise to the intensified triboelectric charge density and the enhancement of power output of PTFE-based TENG.The effects of plasma species and plasma etching sequence on surface morphologies and surface chemical species were investigated by a field emission scanning electron microscopy(FESEM),atomic force microscopy(AFM),and X-ray photoelectron spectroscopy(XPS).The correlation of surface morphology,chemical structure,and TENG performance was elucidated.In addition,the applications of mechanical energy harvesting for lighting,charging capacitors,keyboard sensing and operating a portable calculator were demonstrated. 展开更多
关键词 two-step plasma etching O_(2)and Ar plasma CF_(4)free triboelectric nanogenerator power output enhancement
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部