The paper presents comparative kinetic characteristics of the decomposition of 2,4-dichlorophenol in a dielectric barrier discharge and a combined plasma-catalytic process. Vermiculite containing 5% zirconium was used...The paper presents comparative kinetic characteristics of the decomposition of 2,4-dichlorophenol in a dielectric barrier discharge and a combined plasma-catalytic process. Vermiculite containing 5% zirconium was used as a catalyst. The destruction processes of 2,4-DCP proceed efficiently, the degree of decomposition increases in the combined plasma-catalytic process by a factor of 1.33 and reaches 80%. The experimental results were processed according to the first-order kinetic law (R<sup>2</sup> > 0.97), according to which the effective constants (0.36 ± 0.04) and (0.51 ± 0.03) s<sup>-1</sup> and the decomposition rates of 2,4-DCP (106 and 123 μmol/l·s) when treating model solutions without a catalyst and with vermiculite + Zr 5%, respectively, and the energy costs are 0.012 and 0.017 molecules/100eV. The main decomposition products present in the solution have been determined to be carboxylic acids, aldehydes, the contribution of which does not exceed 2%, as well as chloride ions, and in the gas phase they are carbon dioxide and molecular chlorine (the share of which does not exceed 1.5% of total chlorine content in the system).展开更多
文摘The paper presents comparative kinetic characteristics of the decomposition of 2,4-dichlorophenol in a dielectric barrier discharge and a combined plasma-catalytic process. Vermiculite containing 5% zirconium was used as a catalyst. The destruction processes of 2,4-DCP proceed efficiently, the degree of decomposition increases in the combined plasma-catalytic process by a factor of 1.33 and reaches 80%. The experimental results were processed according to the first-order kinetic law (R<sup>2</sup> > 0.97), according to which the effective constants (0.36 ± 0.04) and (0.51 ± 0.03) s<sup>-1</sup> and the decomposition rates of 2,4-DCP (106 and 123 μmol/l·s) when treating model solutions without a catalyst and with vermiculite + Zr 5%, respectively, and the energy costs are 0.012 and 0.017 molecules/100eV. The main decomposition products present in the solution have been determined to be carboxylic acids, aldehydes, the contribution of which does not exceed 2%, as well as chloride ions, and in the gas phase they are carbon dioxide and molecular chlorine (the share of which does not exceed 1.5% of total chlorine content in the system).