Numerical approximations of multi-dimensional shock waves sometimes ex- hibit an instability called the carbuncle phenomenon. Techniques for suppressing carbuncles are trial-and-error and lack in reliability and gener...Numerical approximations of multi-dimensional shock waves sometimes ex- hibit an instability called the carbuncle phenomenon. Techniques for suppressing carbuncles are trial-and-error and lack in reliability and generality, partly because theoretical knowledge about carbuncles is equally unsatisfactory. It is not known which numerical schemes are affected in which circumstances, what causes carbuncles to appear and whether carbuncles are purely mimerical artifacts or rather features of a continuum equation or model. This article presents evidence towards the latter: we propose that carbuncles are a special class of entropy solutions which can be physically correct in some circumstances. Using "filaments", we trigger a single carbuncle in a new and more reliable way, and compute the structure in detail in similarity coordinates. We argue that carbuncles can, in some circumstances, be valid vanishing viscosity limits. Trying to suppress them is making a physical assumption that may be false.展开更多
It is shown that an arbitrary function from D Rn to Rm will become C0,a-continuous in almost every x∈ D after restriction to a certain subset with limit pointx. For n 〉 m differentiability can be obtained. Example...It is shown that an arbitrary function from D Rn to Rm will become C0,a-continuous in almost every x∈ D after restriction to a certain subset with limit pointx. For n 〉 m differentiability can be obtained. Examples show the Ho1der exponent a=min{1,n/m}is optimal.展开更多
Compressible (full) potential flow is expressed as an equivalent first-order system of conservation laws for density ρ and velocity v. Energy E is shown to be the only nontrivial entropy for that system in multiple...Compressible (full) potential flow is expressed as an equivalent first-order system of conservation laws for density ρ and velocity v. Energy E is shown to be the only nontrivial entropy for that system in multiple space dimensions, and it is strictly convex in ρ, v if and only if |v| 〈 c. For motivation some simple variations on the relative entropy theme of Dafer- mos/DiPerna are given, for example that smooth regions of weak entropy solutions shrink at finite speed, and that smooth solutions force solutions of singular entropy-compatible per- turbations to converge to them. We conjecture that entropy weak solutions of compressible potential flow are unique, in contrast to the known counterexamples for the Euler equations.展开更多
文摘Numerical approximations of multi-dimensional shock waves sometimes ex- hibit an instability called the carbuncle phenomenon. Techniques for suppressing carbuncles are trial-and-error and lack in reliability and generality, partly because theoretical knowledge about carbuncles is equally unsatisfactory. It is not known which numerical schemes are affected in which circumstances, what causes carbuncles to appear and whether carbuncles are purely mimerical artifacts or rather features of a continuum equation or model. This article presents evidence towards the latter: we propose that carbuncles are a special class of entropy solutions which can be physically correct in some circumstances. Using "filaments", we trigger a single carbuncle in a new and more reliable way, and compute the structure in detail in similarity coordinates. We argue that carbuncles can, in some circumstances, be valid vanishing viscosity limits. Trying to suppress them is making a physical assumption that may be false.
文摘It is shown that an arbitrary function from D Rn to Rm will become C0,a-continuous in almost every x∈ D after restriction to a certain subset with limit pointx. For n 〉 m differentiability can be obtained. Examples show the Ho1der exponent a=min{1,n/m}is optimal.
基金partially supported by the National Science Foundation under Grant No.NSF DMS-1054115a Sloan Foundation Research Fellowship
文摘Compressible (full) potential flow is expressed as an equivalent first-order system of conservation laws for density ρ and velocity v. Energy E is shown to be the only nontrivial entropy for that system in multiple space dimensions, and it is strictly convex in ρ, v if and only if |v| 〈 c. For motivation some simple variations on the relative entropy theme of Dafer- mos/DiPerna are given, for example that smooth regions of weak entropy solutions shrink at finite speed, and that smooth solutions force solutions of singular entropy-compatible per- turbations to converge to them. We conjecture that entropy weak solutions of compressible potential flow are unique, in contrast to the known counterexamples for the Euler equations.