期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Improved flood susceptibility mapping using a best first decision tree integrated with ensemble learning techniques 被引量:2
1
作者 Binh Thai Pham Abolfazl Jaafari +6 位作者 Tran van Phong Hoang Phan Hai Yen Tran Thi Tuyen vu van luong Huu Duy Nguyen Hiep van Le Loke Kok Foong 《Geoscience Frontiers》 SCIE CAS CSCD 2021年第3期333-342,共10页
Improving the accuracy of flood prediction and mapping is crucial for reducing damage resulting from flood events.In this study,we proposed and validated three ensemble models based on the Best First Decision Tree(BFT... Improving the accuracy of flood prediction and mapping is crucial for reducing damage resulting from flood events.In this study,we proposed and validated three ensemble models based on the Best First Decision Tree(BFT)and the Bagging(Bagging-BFT),Decorate(Bagging-BFT),and Random Subspace(RSS-BFT)ensemble learning techniques for an improved prediction of flood susceptibility in a spatially-explicit manner.A total number of 126 historical flood events from the Nghe An Province(Vietnam)were connected to a set of 10 flood influencing factors(slope,elevation,aspect,curvature,river density,distance from rivers,flow direction,geology,soil,and land use)for generating the training and validation datasets.The models were validated via several performance metrics that demonstrated the capability of all three ensemble models in elucidating the underlying pattern of flood occurrences within the research area and predicting the probability of future flood events.Based on the Area Under the receiver operating characteristic Curve(AUC),the ensemble Decorate-BFT model that achieved an AUC value of 0.989 was identified as the superior model over the RSS-BFT(AUC=0.982)and Bagging-BFT(AUC=0.967)models.A comparison between the performance of the models and the models previously reported in the literature confirmed that our ensemble models provided a reliable estimate of flood susceptibilities and their resulting susceptibility maps are trustful for flood early warning systems as well as development of mitigation plans. 展开更多
关键词 Machine learning Ensemble learners Hybrid modeling
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部