期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Interaction of Seedling Germination, Planting Date, and Flumioxazin on Peanut Physiology under Irrigated Conditions
1
作者 Nicholas L. Hurdle Timothy L. Grey +2 位作者 Cristiane Pilon w. scott monfort Donn G. Shilling 《American Journal of Plant Sciences》 2020年第12期2012-2030,共19页
Diclosulam and flumioxazin applied preemergent (PRE) results in direct peanut exposure to these herbicides prior to seedling emergence. Flumioxazin has been reported to induce injury in adverse weather (</span>&... Diclosulam and flumioxazin applied preemergent (PRE) results in direct peanut exposure to these herbicides prior to seedling emergence. Flumioxazin has been reported to induce injury in adverse weather (</span><i><span style="font-family:Verdana;">i.e.</span></i><span style="font-family:Verdana;"> cool-wet soil conditions) at crop emergence. Research at Ty Ty and Plains, Georgia evaluated the physiological effects of PRE herbicides to emerging peanut in 2018 and 2019. Peanut seed with variable germination and different planting dates were evaluated as additional factors. Peanut plant physiological measurements included electron transport (ETR), net assimilation rate (</span><i><span style="font-family:Verdana;">A</span></i><sub><span style="font-family:Verdana;">net</span></sub><span style="font-family:Verdana;">), quantum yield of PSII (Φ</span><sub><span style="font-family:Verdana;">PSII</span></sub><span style="font-family:Verdana;">), and stomatal conductance to water vapor (GSW). Data were obtained from V3 to R1 peanut growth stages using a LiCOR 6800, along with stand counts and plant width measures. In 2018, diclosulam reduced peanut ETR when measured across multiple growing degree days (GDD) after planting, compared to the nontreated control (NTC). Flumioxazin reduced peanut ETR compared to the NTC, at several sample timings for each planting date. In 2018 and 2019 at both locations, flumioxazin impacted </span><i><span style="font-family:Verdana;">A</span></i><sub><span style="font-family:Verdana;">net</span></sub><span style="font-family:Verdana;"> less than ETR, but was consistently similar to/or greater than the NTC. Peanut Φ</span><sub><span style="font-family:Verdana;">PSII</span></sub><span style="font-family:Verdana;"> responded similarly as </span><i><span style="font-family:Verdana;">A</span></i><sub><span style="font-family:Verdana;">net</span></sub><span style="font-family:Verdana;"> at each location and yr. GSW was variable in both years</span></span><span style="font-family:Verdana;">;</span><span style="font-family:Verdana;">however flumioxazin treated plants had higher GSW rates than other treated plants. Peanut stand counts, plant widths, and pod yields noted few differences compared to the physiological measures. Though some peanut plant physiological differences were noted when measured at varying GDD’s after planting with the different PRE treatments, planting date, and seed vigor, no specific trends were observed. Growers will often observe peanut injury from flumioxazin early in the season. However, it is transient and does not affect yield. 展开更多
关键词 Diclosulam FLUMIOXAZIN PEANUT Arachis hypogaea L. Photosynthesis Electron Transport
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部