As a fundamental property of nuclei,atomic masses are widely used in many domains of science and engineering.A reliable atomic mass table derived from the experimental data,where the atomic masses and the relevant exp...As a fundamental property of nuclei,atomic masses are widely used in many domains of science and engineering.A reliable atomic mass table derived from the experimental data,where the atomic masses and the relevant experi-mental information can be found conveniently,is in high demand by the research community.To meet the demands,the Atomic Mass Evaluation(AME)was initiated in 1950's and a series of AME mass tables have been published ever since.Currently the AME serves the research community by providing the most reliable and comprehensive information related to the atomic masses.The new atomic mass evaluation AME2016 was published in the March issue of Chinese Physics C as two com-plementary papers[1;2].展开更多
The ground-state mass excess of the T_(z)=−2 drip-line nucleus ^(22)Al is measured for the first time as 18103(10)keV using the newly-developed Bρ-defined isochronous mass spectrometry method at the cooler storage ri...The ground-state mass excess of the T_(z)=−2 drip-line nucleus ^(22)Al is measured for the first time as 18103(10)keV using the newly-developed Bρ-defined isochronous mass spectrometry method at the cooler storage ring in Lanzhou.The new mass excess value allowed us to determine the excitation energies of the two low-lying 1+states in ^(22)Al with significantly reduced uncertainties of 51 keV.When compared to the analogue states in its mirror nucleus ^(22)F,the mirror energy differences of the two 1^(+)states in the ^(22)Al-^(22)F mirror pair are determined to be−625(51)keV and−330(51)keV.The excitation energies and mirror energy differences are used to test the state-of-the-art ab initio valence-space in-medium similarity renormalization group calculations with four sets of interactions derived from the chiral effective field theory.The mechanism leading to the large mirror energy differences is investigated and attributed to the occupation of theπs_(1/2) orbital.展开更多
Theγ-ray emission from the W51 complex is widely acknowledged to be attributed to the interaction between the cosmic rays(CRs)accelerated by the shock of supernova remnant(SNR)W51C and the dense molecular clouds in t...Theγ-ray emission from the W51 complex is widely acknowledged to be attributed to the interaction between the cosmic rays(CRs)accelerated by the shock of supernova remnant(SNR)W51C and the dense molecular clouds in the adjacent star-forming region,W51B.However,the maximum acceleration capability of W51C for CRs remains elusive.Based on observations conducted with the Large High Altitude Air Shower Observatory(LHAASO),we report a significant detection ofγrays emanating from the W51 complex,with energies from 2 to 200 TeV.The LHAASO measurements,for the first time,extend theγ-ray emission from the W51 complex beyond 100 TeV and reveal a significant spectrum bending at tens of TeV.By combining the"π^(0)-decay bump"featured data from Fermi-LAT,the broadbandγ-ray spectrum of the W51 region can be well-characterized by a simple pp-collision model.The observed spectral bending feature suggests an exponential cutoff at~400 TeV or a power-law break at~200 TeV in the CR proton spectrum,most likely providing the first evidence of SNRs serving as CR accelerators approaching the PeV regime.Additionally,two young star clusters within W51B could also be theoretically viable to produce the most energeticγrays observed by LHAASO.Our findings strongly support the presence of extreme CR accelerators within the W51 complex and provide new insights into the origin of Galactic CRs.展开更多
The full array of the Large High Altitude Air Shower Observatory(LHAASO)has been in operation since July 2021.For its kilometer-square array(KM2A),we optimized the selection criteria for very high and ultrahigh energy...The full array of the Large High Altitude Air Shower Observatory(LHAASO)has been in operation since July 2021.For its kilometer-square array(KM2A),we optimized the selection criteria for very high and ultrahigh energyγ-rays using data collected from August 2021 to August 2022,resulting in an improvement in significance of the detection in the Crab Nebula of approximately 15%,compared with that of previous cuts.With the implementation of these new selection criteria,the angular resolution was also significantly improved by approximately 10%at tens of TeV.Other aspects of the full KM2A array performance,such as the pointing error,were also calibrated using the Crab Nebula.The resulting energy spectrum of the Crab Nebula in the energy range of 10-1000 TeV are well fitted by a log-parabola model,which is consistent with the previous results from LHAASO and other experiments.展开更多
The NUBASE2020 evaluation contains the recommended values of the main nuclear physics properties for all nuclei in their ground and excited,isomeric(T1/2≥100 ns)states.It encompasses all experimental data published i...The NUBASE2020 evaluation contains the recommended values of the main nuclear physics properties for all nuclei in their ground and excited,isomeric(T1/2≥100 ns)states.It encompasses all experimental data published in primary(journal articles)and secondary(mainly laboratory reports and conference proceedings)references,together with the corresponding bibliographical information.In cases where no experimental data were available for a particular nuclide,trends in the behavior of specific properties in neighboring nuclei were examined and estimated values are proposed.Evaluation procedures and policies that were used during the development of this evaluated nuclear data library are presented,together with a detailed table of recommended values and their uncertainties.展开更多
This is the second part of the new evaluation of atomic masses,Ame2020.Using least-squares adjustments to all evaluated and accepted experimental data,described in Part I,we derived tables with numerical values and gr...This is the second part of the new evaluation of atomic masses,Ame2020.Using least-squares adjustments to all evaluated and accepted experimental data,described in Part I,we derived tables with numerical values and graphs which supersede those given in Ame2016.The first table presents the recommended atomic mass values and their uncertainties.It is followed by a table of the influences of data on primary nuclides,a table of various reaction and decay energies,and finally,a series of graphs of separation and decay energies.The last section of this paper provides all input data references that were used in the Ame2020 and the Nubase2020 evaluations.展开更多
This is the first of two articles(Part I and Part II)that presents the results of the new atomic mass evaluation,Ame2020.It includes complete information on the experimental input data that were used to derive the tab...This is the first of two articles(Part I and Part II)that presents the results of the new atomic mass evaluation,Ame2020.It includes complete information on the experimental input data that were used to derive the tables of recommended values which are given in Part II.This article describes the evaluation philosophy and procedures that were implemented in the selection of specific nuclear reaction,decay and mass-spectrometric data which were used in a least-squares fit adjustment in order to determine the recommended mass values and their uncertainties.All input data,including both the accepted and rejected ones,are tabulated and compared with the adjusted values obtained from the least-squares fit analysis.Differences with the previous Ame2016 evaluation are discussed and specific examples are presented for several nuclides that may be of interest to Ame users.展开更多
文摘As a fundamental property of nuclei,atomic masses are widely used in many domains of science and engineering.A reliable atomic mass table derived from the experimental data,where the atomic masses and the relevant experi-mental information can be found conveniently,is in high demand by the research community.To meet the demands,the Atomic Mass Evaluation(AME)was initiated in 1950's and a series of AME mass tables have been published ever since.Currently the AME serves the research community by providing the most reliable and comprehensive information related to the atomic masses.The new atomic mass evaluation AME2016 was published in the March issue of Chinese Physics C as two com-plementary papers[1;2].
基金Supported in part by the Strategic Priority Research Program of Chinese Academy of Sciences (XDB34000000)the CAS Project for Young Scientists in Basic Research (YSBR-002)+4 种基金the National Nature Science Foundation of China (12135017,12121005,11975280,12105333,12205340,12322507,12305126,12305151)the Gansu Natural Science Foundation (22JR5RA123,23JRRA614)the National Key R&D Program of China (2021YFA1601500)Support from the Youth Innovation Promotion Association of Chinese Academy of Sciences (2021419,2022423)support from Young Scholar of Regional Development,CAS ([2023]15).
文摘The ground-state mass excess of the T_(z)=−2 drip-line nucleus ^(22)Al is measured for the first time as 18103(10)keV using the newly-developed Bρ-defined isochronous mass spectrometry method at the cooler storage ring in Lanzhou.The new mass excess value allowed us to determine the excitation energies of the two low-lying 1+states in ^(22)Al with significantly reduced uncertainties of 51 keV.When compared to the analogue states in its mirror nucleus ^(22)F,the mirror energy differences of the two 1^(+)states in the ^(22)Al-^(22)F mirror pair are determined to be−625(51)keV and−330(51)keV.The excitation energies and mirror energy differences are used to test the state-of-the-art ab initio valence-space in-medium similarity renormalization group calculations with four sets of interactions derived from the chiral effective field theory.The mechanism leading to the large mirror energy differences is investigated and attributed to the occupation of theπs_(1/2) orbital.
基金supported by the National Natural Science Foundation of China(12393851,12261160362,12393852,12393853,12393854,12022502,2205314,12105301,12105292,12105294,12005246,and 12173039)Department of Science and Technology of Sichuan Province(24NSFJQ0060 and 2024NSFSC0449)+5 种基金Project for Young Scientists in Basic Research of Chinese Academy of Sciences(YSBR-061,2022010)Thailand by the National Science and Technology Development Agency(NSTDA)National Research Council of Thailand(NRCT):High-Potential Research Team Grant Program(N42A650868)the Chengdu Management Committee of Tianfu New Area for constant financial support to research with LHAASO datathe Milky Way Imaging Scroll Painting(MWISP)project,sponsored by the National Key R&D Program of China(2023YFA1608000 and 2017YFA0402701)the CAS Key Research Program of Frontier Sciences(QYZDJ-SSW-SLH047)。
文摘Theγ-ray emission from the W51 complex is widely acknowledged to be attributed to the interaction between the cosmic rays(CRs)accelerated by the shock of supernova remnant(SNR)W51C and the dense molecular clouds in the adjacent star-forming region,W51B.However,the maximum acceleration capability of W51C for CRs remains elusive.Based on observations conducted with the Large High Altitude Air Shower Observatory(LHAASO),we report a significant detection ofγrays emanating from the W51 complex,with energies from 2 to 200 TeV.The LHAASO measurements,for the first time,extend theγ-ray emission from the W51 complex beyond 100 TeV and reveal a significant spectrum bending at tens of TeV.By combining the"π^(0)-decay bump"featured data from Fermi-LAT,the broadbandγ-ray spectrum of the W51 region can be well-characterized by a simple pp-collision model.The observed spectral bending feature suggests an exponential cutoff at~400 TeV or a power-law break at~200 TeV in the CR proton spectrum,most likely providing the first evidence of SNRs serving as CR accelerators approaching the PeV regime.Additionally,two young star clusters within W51B could also be theoretically viable to produce the most energeticγrays observed by LHAASO.Our findings strongly support the presence of extreme CR accelerators within the W51 complex and provide new insights into the origin of Galactic CRs.
基金Supported by the National Key R&D Program of China(2018YFA0404201,2018YFA0404202,2018YFA0404203,2018YFA0404204)the National Natural Science Foundation of China(12022502,12205314,12105301,12261160362,12105294,U1931201)+2 种基金the Youth Innovation Promotion Association CAS(2022010)in Thailand by the National Science and Technology Development Agency(NSTDA)the National Research Council of Thailand(NRCT):High-Potential Research Team Grant Program(N42A650868)。
文摘The full array of the Large High Altitude Air Shower Observatory(LHAASO)has been in operation since July 2021.For its kilometer-square array(KM2A),we optimized the selection criteria for very high and ultrahigh energyγ-rays using data collected from August 2021 to August 2022,resulting in an improvement in significance of the detection in the Crab Nebula of approximately 15%,compared with that of previous cuts.With the implementation of these new selection criteria,the angular resolution was also significantly improved by approximately 10%at tens of TeV.Other aspects of the full KM2A array performance,such as the pointing error,were also calibrated using the Crab Nebula.The resulting energy spectrum of the Crab Nebula in the energy range of 10-1000 TeV are well fitted by a log-parabola model,which is consistent with the previous results from LHAASO and other experiments.
基金This work was supported by the U.S.Department of Energy,Office of Science,Office of Nuclear Physics,under Contract No.DE-AC02-06CH11357(ANL)in part by the National Key Research and Development Program of China(Grant No.2016YFA0400504)+1 种基金the Strategic Priority Research Program of Chinese Academy of Sciences(CAS,Grant No.XDB34000000)(IMP)W.J.Huang acknowledges the financial support by the Max-Planck-Society.S.Naimi acknowledges the support of the RIKEN Pioneering Project Funding.
文摘The NUBASE2020 evaluation contains the recommended values of the main nuclear physics properties for all nuclei in their ground and excited,isomeric(T1/2≥100 ns)states.It encompasses all experimental data published in primary(journal articles)and secondary(mainly laboratory reports and conference proceedings)references,together with the corresponding bibliographical information.In cases where no experimental data were available for a particular nuclide,trends in the behavior of specific properties in neighboring nuclei were examined and estimated values are proposed.Evaluation procedures and policies that were used during the development of this evaluated nuclear data library are presented,together with a detailed table of recommended values and their uncertainties.
基金This work is supported in part by the Strategic Priority Research Program of Chinese Academy of Sciences(CAS,Grant No.XDB34000000)the National Key Research and Development Program of China(Grant No.2016YFA0400504)the U.S.Department of Energy,Of-fice of Science,Office of Nuclear Physics,under Contract No.DE-AC02-06CH11357.
文摘This is the second part of the new evaluation of atomic masses,Ame2020.Using least-squares adjustments to all evaluated and accepted experimental data,described in Part I,we derived tables with numerical values and graphs which supersede those given in Ame2016.The first table presents the recommended atomic mass values and their uncertainties.It is followed by a table of the influences of data on primary nuclides,a table of various reaction and decay energies,and finally,a series of graphs of separation and decay energies.The last section of this paper provides all input data references that were used in the Ame2020 and the Nubase2020 evaluations.
文摘This is the first of two articles(Part I and Part II)that presents the results of the new atomic mass evaluation,Ame2020.It includes complete information on the experimental input data that were used to derive the tables of recommended values which are given in Part II.This article describes the evaluation philosophy and procedures that were implemented in the selection of specific nuclear reaction,decay and mass-spectrometric data which were used in a least-squares fit adjustment in order to determine the recommended mass values and their uncertainties.All input data,including both the accepted and rejected ones,are tabulated and compared with the adjusted values obtained from the least-squares fit analysis.Differences with the previous Ame2016 evaluation are discussed and specific examples are presented for several nuclides that may be of interest to Ame users.