期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Ultrasonic solidification mechanism and optimized application performances of ternary Mg_(71.5)Zn_(26.1)Y_(2.4) alloy
1
作者 Y.J.Hu J.Y.Wang +1 位作者 w.zhai B.Wei 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第10期3829-3839,共11页
One dimensional(1D) and three dimensional(3D) ultrasound sources were applied to the solidification process of Mg_(71.5)Zn_(26.1)Y_(2.4) alloy.The acoustic spectra were in-situ measured, based on which the cavitation ... One dimensional(1D) and three dimensional(3D) ultrasound sources were applied to the solidification process of Mg_(71.5)Zn_(26.1)Y_(2.4) alloy.The acoustic spectra were in-situ measured, based on which the cavitation intensities and dynamic solidification mechanism were further investigated. With the increase of ultrasonic dimension and amplitude, the primary Mg_(3)Zn_(6)Y phase was significantly refined from petals to nearly pentagonal shape. The sound field measurements showed that the transient cavitation played a decisive role in generating a high local undercooling, which facilitated the formation of icosahedral clusters and promoted the nucleation of primary Mg_(3)Zn_(6)Y phase. The morphological transition of(α-Mg+Mg_(3)Zn_(6)Y) eutectic from lamellar to anomalous structure occurred under 3D ultrasonic condition. The stable cavitation took the main responsibility because the high pressure excited by nonlinearly oscillating bubbles induced the preferential nucleation of α-Mg phase rather than Mg_(3)Zn_(6)Y phase. As compared with its static values, the tensile strength and compression plasticity of this alloy were increased by the factors of 1.9 and 2.1, and its corrosion resistance was also improved with the corrosion current density decreased by one order of magnitude. 展开更多
关键词 Three dimensional ultrasounds Quasicrystalline Mg_(3)Zn_(6)Y phase Anomalous eutectic Mechanical performances Corrosion resistance
下载PDF
Ultrasonic excitation induced nanocrystallization and toughening of Zr46.75Cu46.75Al6.5 bulk metallic glass 被引量:3
2
作者 w.zhai L.H.Nie +3 位作者 X.D.Hui Y.Xiao T.Wang B.Wei 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2020年第10期157-161,共5页
Intensive power ultrasound is introduced to Zr46.75Cu46.75Al6.5bulk metallic glass(BMG)as an easy-procurable,non-destructive physical method to modulate its atomic rearrangement and shear deformation behavior.The micr... Intensive power ultrasound is introduced to Zr46.75Cu46.75Al6.5bulk metallic glass(BMG)as an easy-procurable,non-destructive physical method to modulate its atomic rearrangement and shear deformation behavior.The microstructure after ultrasonic excitation with amplitude about 15μm in 20 k Hz for 2 h is characterized by large amount of Cu10Zr7 nanocrystals with size of 20–50 nm embedded in the glass matrix.This leads to a sharp increase in the critical stress for the first pop-in event of shear banding,and thus simultaneously improves both compressive plasticity and yield strength.Our findings provide a novel approach for overcoming the strength-ductility trade-off dilemma. 展开更多
关键词 Bulk metallic glass NANOCRYSTALLIZATION PLASTICITY TOUGHNESS Ultrasound
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部