Atomic Force Microscopy (AFM) mechanical lithography is a simple but significant method for nanofabrication. In this work, we used this method to construct nanos- tructures on Pt/Cu bilayer metal electrodes under ambi...Atomic Force Microscopy (AFM) mechanical lithography is a simple but significant method for nanofabrication. In this work, we used this method to construct nanos- tructures on Pt/Cu bilayer metal electrodes under ambient conditions in air. The influence of various scratch parameters, such as the applied force, scan velocity and circle times, on the lithography patterns was investigated. The Pt-Cu-CuxO-Cu-Pt nanostructure was constructed by choosing suitable scratch parameters and oxidation at room temperature. The properties of the scratched regions were also investigated by friction force microscopy and conductive AFM (C-AFM). The I-V curves show symmetric and linear properties, and Ohmic contacts were formed. These results indicate that AFM mechanical lithography is a powerful tool for fabricating novel metal-semiconductor nanoelectronic devices.展开更多
基金Supported by the National Natural Science Foundation of China (Grant No. 90306010)the Program for New Century Excellent Talents in Uni-versity of China (Grant No. NCET-04-0653)+1 种基金the National Basic Research Program of China (Grant No. 2007CB616911)the Science and Technology Department of Henan Province (Grant No. 072300420100)
文摘Atomic Force Microscopy (AFM) mechanical lithography is a simple but significant method for nanofabrication. In this work, we used this method to construct nanos- tructures on Pt/Cu bilayer metal electrodes under ambient conditions in air. The influence of various scratch parameters, such as the applied force, scan velocity and circle times, on the lithography patterns was investigated. The Pt-Cu-CuxO-Cu-Pt nanostructure was constructed by choosing suitable scratch parameters and oxidation at room temperature. The properties of the scratched regions were also investigated by friction force microscopy and conductive AFM (C-AFM). The I-V curves show symmetric and linear properties, and Ohmic contacts were formed. These results indicate that AFM mechanical lithography is a powerful tool for fabricating novel metal-semiconductor nanoelectronic devices.