This study provides an integrated interpretation for the Mesozoic-Cenozoic tectonothermal evolutionary history of the Permian strata in the Qishan area of the southwestern Weibei Uplift,Ordos Basin.Apatite fission-tra...This study provides an integrated interpretation for the Mesozoic-Cenozoic tectonothermal evolutionary history of the Permian strata in the Qishan area of the southwestern Weibei Uplift,Ordos Basin.Apatite fission-track and apatite/zircon(U-Th)/He thermochronometry,bitumen reflectance,thermal conductivity of rocks,paleotemperature recovery,and basin modeling were used to restore the Meso-Cenozoic tectonothermal history of the Permian Strata.The Triassic AFT data have a pooled age of^180±7 Ma with one age peak and P(χ2)=86%.The average value of corrected apatite(U-Th)/He age of two Permian sandstones is^168±4 Ma and a zircon(U-Th)/He age from the Cambrian strata is^231±14 Ma.Bitumen reflectance and maximum paleotemperature of two Ordovician mudstones are 1.81%,1.57%and^210℃,~196℃respectively.After undergoing a rapid subsidence and increasing temperature in Triassic influenced by intrusive rocks in some areas,the Permian strata experienced four cooling-uplift stages after the time when the maximum paleotemperature reached in late Jurassic:(1)A cooling stage(~163 Ma to^140 Ma)with temperatures ranging from^132℃to^53℃and a cooling rate of^3℃/Ma,an erosion thickness of^1900 m and an uplift rate of^82 m/Ma;(2)A cooling stage(~140 Ma to^52 Ma)with temperatures ranging from^53℃to^47℃and a cooling rate less than^0.1℃/Ma,an erosion thickness of^300 m and an uplift rate of^3 m/Ma;(3)(~52 Ma to^8 Ma)with^47℃to^43℃and^0.1℃/Ma,an erosion thickness of^500 m and an uplift rate of^11 m/Ma;(3)(~8 Ma to present)with^43℃to^20℃and^3℃/Ma,an erosion thickness of^650 m and an uplift rate of^81 m/Ma.The tectonothermal evolutionary history of the Qishan area in Triassic was influenced by the interaction of the Qinling Orogeny and the Weibei Uplift,and the south Qishan area had the earliest uplift-cooling time compared to other parts within the Weibei Uplift.The early Eocene at^52 Ma and the late Miocene at^8 Ma,as two significant turning points after which both the rate of uplift and the rate of temperature changed rapidly,were two key time for the uplift-cooling history of the Permian strata in the Qishan area of the southwestern Weibei Uplift,Ordos Basin.展开更多
The overlapping frequency domain equalization(O-FDE) in digital signal processing(DSP) is frequently employed to provide dispersion compensation in long-distance coherent fiber optical communications. However, the cha...The overlapping frequency domain equalization(O-FDE) in digital signal processing(DSP) is frequently employed to provide dispersion compensation in long-distance coherent fiber optical communications. However, the change in overlapping symbol length that occurs during the processing of the O-FDE algorithm will typically be influenced by the decision and zero filling of the last subblock, which is harmful to the robustness of the O-FDE algorithm. In this study, with a thorough robustness analysis on changing overlapping symbol length, we present a novel method for decision and zero filling of the last subblock and examine the correspondingly resulting error vector magnitude(EVM) and symbol error ratio(SER) under different values of optical signal-to-noise ratio(OSNR), chromatic dispersion, and overlapped symbol lengths.展开更多
基金the Project “Constraints on lithospheric dynamic evolution and hydrocarbon accumulation from Late Mesozoic paleogeothermal field in Ordos and Qinshui Basins supported by NSFC (41630312)”the “Palaeogeothermal and uplift-related cooling history of complex structure zone, Restricted by thermochronology by NSFC (41602128)”+2 种基金the NSFC (41703055), the “research Grants by China Geological Survey (DD20160060)”the “Fundamental Research Funds for the Central Universities, CHD (300102279206, 300102278204)”the fund from China Scholarship Council (201806565017)
文摘This study provides an integrated interpretation for the Mesozoic-Cenozoic tectonothermal evolutionary history of the Permian strata in the Qishan area of the southwestern Weibei Uplift,Ordos Basin.Apatite fission-track and apatite/zircon(U-Th)/He thermochronometry,bitumen reflectance,thermal conductivity of rocks,paleotemperature recovery,and basin modeling were used to restore the Meso-Cenozoic tectonothermal history of the Permian Strata.The Triassic AFT data have a pooled age of^180±7 Ma with one age peak and P(χ2)=86%.The average value of corrected apatite(U-Th)/He age of two Permian sandstones is^168±4 Ma and a zircon(U-Th)/He age from the Cambrian strata is^231±14 Ma.Bitumen reflectance and maximum paleotemperature of two Ordovician mudstones are 1.81%,1.57%and^210℃,~196℃respectively.After undergoing a rapid subsidence and increasing temperature in Triassic influenced by intrusive rocks in some areas,the Permian strata experienced four cooling-uplift stages after the time when the maximum paleotemperature reached in late Jurassic:(1)A cooling stage(~163 Ma to^140 Ma)with temperatures ranging from^132℃to^53℃and a cooling rate of^3℃/Ma,an erosion thickness of^1900 m and an uplift rate of^82 m/Ma;(2)A cooling stage(~140 Ma to^52 Ma)with temperatures ranging from^53℃to^47℃and a cooling rate less than^0.1℃/Ma,an erosion thickness of^300 m and an uplift rate of^3 m/Ma;(3)(~52 Ma to^8 Ma)with^47℃to^43℃and^0.1℃/Ma,an erosion thickness of^500 m and an uplift rate of^11 m/Ma;(3)(~8 Ma to present)with^43℃to^20℃and^3℃/Ma,an erosion thickness of^650 m and an uplift rate of^81 m/Ma.The tectonothermal evolutionary history of the Qishan area in Triassic was influenced by the interaction of the Qinling Orogeny and the Weibei Uplift,and the south Qishan area had the earliest uplift-cooling time compared to other parts within the Weibei Uplift.The early Eocene at^52 Ma and the late Miocene at^8 Ma,as two significant turning points after which both the rate of uplift and the rate of temperature changed rapidly,were two key time for the uplift-cooling history of the Permian strata in the Qishan area of the southwestern Weibei Uplift,Ordos Basin.
基金supported by the Xichang University's New Doctoral Research Starting Program (No.YBZ202107)。
文摘The overlapping frequency domain equalization(O-FDE) in digital signal processing(DSP) is frequently employed to provide dispersion compensation in long-distance coherent fiber optical communications. However, the change in overlapping symbol length that occurs during the processing of the O-FDE algorithm will typically be influenced by the decision and zero filling of the last subblock, which is harmful to the robustness of the O-FDE algorithm. In this study, with a thorough robustness analysis on changing overlapping symbol length, we present a novel method for decision and zero filling of the last subblock and examine the correspondingly resulting error vector magnitude(EVM) and symbol error ratio(SER) under different values of optical signal-to-noise ratio(OSNR), chromatic dispersion, and overlapped symbol lengths.