为实现电力系统次/超同步振荡的快速、准确辨识,提出了一种基于同步压缩广义S变换(synchrosqueezing generalized S transform, SSGST)和改进稀疏时域法(improved sparse time domain method,ISTD)结合的次/超同步振荡辨识方法。该方法...为实现电力系统次/超同步振荡的快速、准确辨识,提出了一种基于同步压缩广义S变换(synchrosqueezing generalized S transform, SSGST)和改进稀疏时域法(improved sparse time domain method,ISTD)结合的次/超同步振荡辨识方法。该方法首先利用能量比函数对电力系统广域量测信息实时检测,当检测到信号能量发生突变时,利用SSGST对检测到的振荡信号分解得到相应的SSGST时频系数矩阵;然后通过改进的脊线提取方法在时频域实现对各振荡分量的最优轨迹搜索;进一步,结合最优轨迹时频索引重构各振荡分量的时域分量,并利用ISTD辨识方法计算出各振荡分量的频率和阻尼比系数;最后,通过自合成模拟信号、双馈风电场经串补并网系统仿真信号和某实际风电场实测数据验证了所提方法的准确性和有效性。展开更多
为解决电力系统暂态过电压风险评估中输入特征集构建合理性不足、强相关性差等问题,提出一种考虑新能源多场站短路比MRSCR(multiple renewable energy stations short circuit ratio)的暂态过电压风险评估方法。首先,通过分析暂态过电...为解决电力系统暂态过电压风险评估中输入特征集构建合理性不足、强相关性差等问题,提出一种考虑新能源多场站短路比MRSCR(multiple renewable energy stations short circuit ratio)的暂态过电压风险评估方法。首先,通过分析暂态过电压数学模型,发现MRSCR与暂态过电压呈负相关性;然后,综合考虑MRSCR与其他影响系统暂态过电压的关键因素,构建多维输入特征集;最后,通过卷积神经网络建立输入特征与暂态过电压的高维映射,实现系统暂态过电压风险的快速、准确评估,并通过算例分析验证了所提方法的有效性、可行性。展开更多
文摘为实现电力系统次/超同步振荡的快速、准确辨识,提出了一种基于同步压缩广义S变换(synchrosqueezing generalized S transform, SSGST)和改进稀疏时域法(improved sparse time domain method,ISTD)结合的次/超同步振荡辨识方法。该方法首先利用能量比函数对电力系统广域量测信息实时检测,当检测到信号能量发生突变时,利用SSGST对检测到的振荡信号分解得到相应的SSGST时频系数矩阵;然后通过改进的脊线提取方法在时频域实现对各振荡分量的最优轨迹搜索;进一步,结合最优轨迹时频索引重构各振荡分量的时域分量,并利用ISTD辨识方法计算出各振荡分量的频率和阻尼比系数;最后,通过自合成模拟信号、双馈风电场经串补并网系统仿真信号和某实际风电场实测数据验证了所提方法的准确性和有效性。
文摘为解决电力系统暂态过电压风险评估中输入特征集构建合理性不足、强相关性差等问题,提出一种考虑新能源多场站短路比MRSCR(multiple renewable energy stations short circuit ratio)的暂态过电压风险评估方法。首先,通过分析暂态过电压数学模型,发现MRSCR与暂态过电压呈负相关性;然后,综合考虑MRSCR与其他影响系统暂态过电压的关键因素,构建多维输入特征集;最后,通过卷积神经网络建立输入特征与暂态过电压的高维映射,实现系统暂态过电压风险的快速、准确评估,并通过算例分析验证了所提方法的有效性、可行性。