输变电线路工程建设过程会产生大量弃土,因土体松散受降雨作用极易饱和形成渗流,从而诱发滑坡和水土流失。本研究在输变电工程水土保持仿真模拟试验平台,通过喷洒方式向塔基弃土添加微生物矿化菌液和胶结液,分析测定土壤试样的干密度、...输变电线路工程建设过程会产生大量弃土,因土体松散受降雨作用极易饱和形成渗流,从而诱发滑坡和水土流失。本研究在输变电工程水土保持仿真模拟试验平台,通过喷洒方式向塔基弃土添加微生物矿化菌液和胶结液,分析测定土壤试样的干密度、孔隙度、渗透性、液限、塑限、压缩性、抗剪切强度等土力学指标,用射线衍射(X-ray diffraction,XRD)和扫描电镜(scanning electron microscopy,SEM)表征矿化试样的晶体类型和微观形貌,最终将技术工艺在输电线路工程现场进行示范应用。结果表明,喷洒微生物矿化菌液和胶结液,可在塔基弃土孔隙中形成方解石型碳酸钙晶体,使塔基弃土更加密实,增大干密度,降低孔隙度和渗透系数,且液限增高5%,塑限降低5%,赋予土壤更好的可塑性,内摩擦角从29.97°提高到了32.62°,提高土壤的抗剪强度,对塔基弃土浅层具有很好的固结作用,可显著降低受不同等级强度降雨侵蚀的产沙量,从而减少因降雨侵蚀造成的水土流失,现场示范也进一步证明了抗降雨侵蚀效果,微生物矿化技术可非常明显地减少流失斑。因此,微生物矿化技术可作为输变电线路工程建设的一项绿色、环保、简便、高效的水土保持措施。展开更多
An effective flotation approach is proposed for improving the recovery of molybdenite fines from a finely-disseminated molybdenum ore. To maximize the flotation recovery of molybdenum, process mineralogy of raw ore, c...An effective flotation approach is proposed for improving the recovery of molybdenite fines from a finely-disseminated molybdenum ore. To maximize the flotation recovery of molybdenum, process mineralogy of raw ore, contrast tests, optimization of operation conditions and particle size analysis were systematically investigated. Process mineralogy suggests that in the raw ore, 61.63% of molybdenite particles distribute in the 〈20 pm size fraction, and intergrow with muscovite and pyrite as the contained and disseminated type. Contrast tests indicate that conventional flotation responds to poor collection efficiency for particles less than 25 pm. Oil agglomerate flotation (OAF) process demonstrates an obvious superiority in improving the flotation recovery of molybdenite fines. Furthermore, the flotation results of OAF process reveal that the dosage of transformer oil plays a critical role on the average size of collected mineral particles (d(0), agglomerates (d^0) and the molybdenum recovery. In addition, industrial tests illustrate that compared with the Mo-S bulk flotation approach, OAF process not only increases Mo recovery and grade of molybdenum concentrate by 22.75% and 17.47% respectively, but also achieves a sulfur concentrate with a superior grade of 38.92%.展开更多
Natural minerals receive growing attention as inexpensive, green, and efficient catalysts for degradation of organic pollutants. Mechanical activation of natural chalcopyrite was conducted for improving the catalytic ...Natural minerals receive growing attention as inexpensive, green, and efficient catalysts for degradation of organic pollutants. Mechanical activation of natural chalcopyrite was conducted for improving the catalytic performance.Tetracycline degradation was evaluated in the presence of hydrogen peroxide and mechanically activated chalcopyrite.Tetracycline degradation at 100 min is 55.52%(Chp10), 68.97%(Chp30), 77.79%(Chp60), and 86.43%(Chp120),respectively, and the rate constant of pseudo-first-order kinetics is 0.0079, 0.0109, 0.0137 and 0.0192 min^(-1), respectively.Chalcopyrite samples were examined by multiple characterizations. Mechanical activation of natural chalcopyrite induces the decline of particle size and slight increase of surface area, smaller grain size, lattice strain, and partial sulfur oxidation. The relationship between catalytic activity and property change manifests that the improved catalytic ability is mainly ascribed to the increase of surface area and surface oxidation induced by mechanical activation. This work provides novel insights into the improvement of catalytic performance of natural minerals by mechanical activation.展开更多
Mercury (Hg) is one of the most toxic heavy metals to living organisms and its conspicuous effect is the inhibition of root growth. However, little is known about the molecular genetic basis for root growth under ex...Mercury (Hg) is one of the most toxic heavy metals to living organisms and its conspicuous effect is the inhibition of root growth. However, little is known about the molecular genetic basis for root growth under excess Hg2+ stress. To map quantitative trait loci (QTLs) in rice for Hg2+ tolerance, a population of 120 recombinant inbred lines derived from a cross between two japonica cultivars Yuefu and IRAT109 was grown in 0.5 mmol/L CaCI2 solution. Relative root length (RRL), percentage of the seminal root length in +HgCI2 to -HgCI2, was used for assessing Hg2+ tolerance. In a dose-response experiment, Yuefu had a higher RRL than IRAT109 and showed the most significant difference at the Hg2+ concentration of 1.5 tJmol/L. Three putative QTLs for RRL were detected on chromosomes 1, 2 and 5, and totally explained about 35.7% of the phenotypic variance in Hg2+ tolerance. The identified QTLs for RRL might be useful for improving Hg2+ tolerance of rice by molecular marker-assisted selection.展开更多
文摘输变电线路工程建设过程会产生大量弃土,因土体松散受降雨作用极易饱和形成渗流,从而诱发滑坡和水土流失。本研究在输变电工程水土保持仿真模拟试验平台,通过喷洒方式向塔基弃土添加微生物矿化菌液和胶结液,分析测定土壤试样的干密度、孔隙度、渗透性、液限、塑限、压缩性、抗剪切强度等土力学指标,用射线衍射(X-ray diffraction,XRD)和扫描电镜(scanning electron microscopy,SEM)表征矿化试样的晶体类型和微观形貌,最终将技术工艺在输电线路工程现场进行示范应用。结果表明,喷洒微生物矿化菌液和胶结液,可在塔基弃土孔隙中形成方解石型碳酸钙晶体,使塔基弃土更加密实,增大干密度,降低孔隙度和渗透系数,且液限增高5%,塑限降低5%,赋予土壤更好的可塑性,内摩擦角从29.97°提高到了32.62°,提高土壤的抗剪强度,对塔基弃土浅层具有很好的固结作用,可显著降低受不同等级强度降雨侵蚀的产沙量,从而减少因降雨侵蚀造成的水土流失,现场示范也进一步证明了抗降雨侵蚀效果,微生物矿化技术可非常明显地减少流失斑。因此,微生物矿化技术可作为输变电线路工程建设的一项绿色、环保、简便、高效的水土保持措施。
基金Project(2016zztsl03) supported by the Fundamental Research Funds for the Central Universities, China Project(51374249) supported by the National Natural Science Foundation of China+1 种基金 Project(2015BAB12B02) supported by the National Key Technology R&D Program of China Project(2013B090800016) supported by Guangdong Provincial Science and Technology Plan, China
文摘An effective flotation approach is proposed for improving the recovery of molybdenite fines from a finely-disseminated molybdenum ore. To maximize the flotation recovery of molybdenum, process mineralogy of raw ore, contrast tests, optimization of operation conditions and particle size analysis were systematically investigated. Process mineralogy suggests that in the raw ore, 61.63% of molybdenite particles distribute in the 〈20 pm size fraction, and intergrow with muscovite and pyrite as the contained and disseminated type. Contrast tests indicate that conventional flotation responds to poor collection efficiency for particles less than 25 pm. Oil agglomerate flotation (OAF) process demonstrates an obvious superiority in improving the flotation recovery of molybdenite fines. Furthermore, the flotation results of OAF process reveal that the dosage of transformer oil plays a critical role on the average size of collected mineral particles (d(0), agglomerates (d^0) and the molybdenum recovery. In addition, industrial tests illustrate that compared with the Mo-S bulk flotation approach, OAF process not only increases Mo recovery and grade of molybdenum concentrate by 22.75% and 17.47% respectively, but also achieves a sulfur concentrate with a superior grade of 38.92%.
基金Project(2020YFC1908802) supported by the National Key Research and Development Project of China。
文摘Natural minerals receive growing attention as inexpensive, green, and efficient catalysts for degradation of organic pollutants. Mechanical activation of natural chalcopyrite was conducted for improving the catalytic performance.Tetracycline degradation was evaluated in the presence of hydrogen peroxide and mechanically activated chalcopyrite.Tetracycline degradation at 100 min is 55.52%(Chp10), 68.97%(Chp30), 77.79%(Chp60), and 86.43%(Chp120),respectively, and the rate constant of pseudo-first-order kinetics is 0.0079, 0.0109, 0.0137 and 0.0192 min^(-1), respectively.Chalcopyrite samples were examined by multiple characterizations. Mechanical activation of natural chalcopyrite induces the decline of particle size and slight increase of surface area, smaller grain size, lattice strain, and partial sulfur oxidation. The relationship between catalytic activity and property change manifests that the improved catalytic ability is mainly ascribed to the increase of surface area and surface oxidation induced by mechanical activation. This work provides novel insights into the improvement of catalytic performance of natural minerals by mechanical activation.
基金funded by the National Natural Science Foundation of China(Grant No.30771330)the National Natural Science Foundation of Zhejiang Province,China(Grant No.Z306300)the Zhejiang Normal University Innovative Research Team Program of China
文摘Mercury (Hg) is one of the most toxic heavy metals to living organisms and its conspicuous effect is the inhibition of root growth. However, little is known about the molecular genetic basis for root growth under excess Hg2+ stress. To map quantitative trait loci (QTLs) in rice for Hg2+ tolerance, a population of 120 recombinant inbred lines derived from a cross between two japonica cultivars Yuefu and IRAT109 was grown in 0.5 mmol/L CaCI2 solution. Relative root length (RRL), percentage of the seminal root length in +HgCI2 to -HgCI2, was used for assessing Hg2+ tolerance. In a dose-response experiment, Yuefu had a higher RRL than IRAT109 and showed the most significant difference at the Hg2+ concentration of 1.5 tJmol/L. Three putative QTLs for RRL were detected on chromosomes 1, 2 and 5, and totally explained about 35.7% of the phenotypic variance in Hg2+ tolerance. The identified QTLs for RRL might be useful for improving Hg2+ tolerance of rice by molecular marker-assisted selection.