Proposed in the paper is a trigonometric interpolation method for efficient determination of turbomachinery blade aero-damping curves which are required in a flutter assessment.The trigonometric interpolation method w...Proposed in the paper is a trigonometric interpolation method for efficient determination of turbomachinery blade aero-damping curves which are required in a flutter assessment.The trigonometric interpolation method was proposed to be incorporated with the widely used travelling wave method to replace the influence coefficient method.Through analyzing aero-damping/worksum at a few carefully chosen nodal diameters,trigonometric interpolation was applied through existing data points to get aero-damping/worksum at the rest nodal diameters.The proposed approach is much more efficient than the travelling wave method for determining the aero-damping curve of a blade.In principle,the method can be as efficient as the influence coefficient method.Unlike the influence coefficient method,the trigonometric interpolation method does not involve linear superposition,and it can include nonlinear effect and is expected to be more accurate.Two test cases were provided to validate the proposed method and demonstrate its effectiveness.The method is not only effective,but also very easy to be incorporated into existing widely used aero-damping/worksum analysis system using the travelling wave method.展开更多
Since the transition from rotating stall to surge in a transonic compressor at high speed is very quick,quite often there is no time to take measures to prevent the surge.Therefore,it is desired to find any rotating s...Since the transition from rotating stall to surge in a transonic compressor at high speed is very quick,quite often there is no time to take measures to prevent the surge.Therefore,it is desired to find any rotating stall precursors,of which the occurrence can offer sufficient time for stall or surge prevention.In this study,a series of unsteady flow analyses were performed on a transonic compressor under operating conditions before rotating stall with unsteady results scrutinized to find rotating stall precursors.Particular attention is paid to the spatial modes and time modes of static pressure near the casing and around the blade leading and trailing edges.The results show that the characteristics of the precursor in both spatial and time domains can be used as rotating stall warnings.展开更多
基金supported by China’s 111 project(Grant No.B17037)National Natural Science Foundation of China(Grant No.51976172)National Science and Technology Major Project(2017-II-0009-0023)。
文摘Proposed in the paper is a trigonometric interpolation method for efficient determination of turbomachinery blade aero-damping curves which are required in a flutter assessment.The trigonometric interpolation method was proposed to be incorporated with the widely used travelling wave method to replace the influence coefficient method.Through analyzing aero-damping/worksum at a few carefully chosen nodal diameters,trigonometric interpolation was applied through existing data points to get aero-damping/worksum at the rest nodal diameters.The proposed approach is much more efficient than the travelling wave method for determining the aero-damping curve of a blade.In principle,the method can be as efficient as the influence coefficient method.Unlike the influence coefficient method,the trigonometric interpolation method does not involve linear superposition,and it can include nonlinear effect and is expected to be more accurate.Two test cases were provided to validate the proposed method and demonstrate its effectiveness.The method is not only effective,but also very easy to be incorporated into existing widely used aero-damping/worksum analysis system using the travelling wave method.
基金The research was supported by the National Natural Science Foundation of China under Grant No.51976172,National Science and Technology Major Project(2017-II-O009-0023),and China's 111 project under Grant No.B17037.
文摘Since the transition from rotating stall to surge in a transonic compressor at high speed is very quick,quite often there is no time to take measures to prevent the surge.Therefore,it is desired to find any rotating stall precursors,of which the occurrence can offer sufficient time for stall or surge prevention.In this study,a series of unsteady flow analyses were performed on a transonic compressor under operating conditions before rotating stall with unsteady results scrutinized to find rotating stall precursors.Particular attention is paid to the spatial modes and time modes of static pressure near the casing and around the blade leading and trailing edges.The results show that the characteristics of the precursor in both spatial and time domains can be used as rotating stall warnings.