The accurate assessment of the spatiotemporal changes in soil nutrients influenced by agricultural production provides the basis for development of management strategies to maintain soil fertility and balance soil nut...The accurate assessment of the spatiotemporal changes in soil nutrients influenced by agricultural production provides the basis for development of management strategies to maintain soil fertility and balance soil nutrients. In this paper, we combined spatial measurements from 2 157 soil samples and geostatistical analysis to assess the spatiotemporal changes in soil organic carbon (SOC), total nitrogen (TN), available phosphorus (AP) and available potassium content (AK) from the first soil survey (in the 1980s) to the second soil survey (in the 2000s) in the Taihu region of Jiangsu Province in China. The results showed that average soil nutrients in three soil types all exhibited the increased levels in the 2000s (except for AK in the yellow brown soil). The standard deviation of soil nutrient contents increased (except for TN in the paddy soil). Agricultural production in the 20 years led to increases in SOC, TN, AP and AK by 74, 82, 89 and 65%, respectively, of the Taihu areas analyzed. From the 1980s to 2000s all the nugget/sill ratios of soil nutrients indices were between 25 and 75% (except for AK in the yellow brown soil in the 2000s), indicating moderate spatial dependence. The ratio of AP in the yellow brown soil in the 2000s was 88.74%, showing weak spatial dependence. The spatial correlation range values for SOC, TN, AP and AK in the 2000s all decreased. The main areas showing declines in SOC, TN and AP were in the northwest. For AK, the main region with declining levels was in the east and middle of western areas. Apparently, the increase in soil nutrients in the Taihu region can be mainly attributed to the large increase in fertilizer inputs, change in crop systems and enhanced residues management since the 1980s. Future emphasis should be placed on avoiding excess fertilizer inputs and balancing the effects of the fertilizers in soils.展开更多
Improving management of soil organic carbon(SOC)has been considered as a substantial mitigation strategy to climate change.Management such as stubble retention(SR),conservation tillage(ZT),and fertilization are recomm...Improving management of soil organic carbon(SOC)has been considered as a substantial mitigation strategy to climate change.Management such as stubble retention(SR),conservation tillage(ZT),and fertilization are recommended for both promoting production and accumulating SOC.However,whether such management practices can cause net increase in SOC or just a slow-down of SOC decline largely depends on the current status of SOC for a given region.This paper synthesized the available SOC data in the croplands of China,and analysed the change of SOC in the top 20 cm soil as a result of management change.The results showed that,on average,SOC increased by 18.3%through SR,by 9.1%through ZT,and by 12.4%,36.9%and 41.5%through application of inorganic(IF),organic(OF)and combined inorganic and organic fertilizers(IOF),respectively,compared to those under stubble removal,conventional tillage and no fertilization.Under SR,ZT,IF,OF and IOF,SOC increased by 16.0%,10.2%,8.2%,32.2%and41.3%,respectively,at the end of the trials compared with the initial values at the start of the trials.Our analysis also showed that in Northeast and Northwest China,SOC in agricultural soils is still decreasing due to cultivation.In North and South China,however,SOC appears to have reached a new equilibrium of low SOC state after a long cultivation history,and soils have greater potential to sequester C.Our analysis highlights the need of taking account of the baseline status to assess the net soil C balance over time and space.展开更多
Soil has been identified as a possible carbon (C) sink for sequestering atmospheric carbon dioxide (CO2). However, soil organic carbon (SOC) dynamics in agro-ecosystems is affected by complex interactions of var...Soil has been identified as a possible carbon (C) sink for sequestering atmospheric carbon dioxide (CO2). However, soil organic carbon (SOC) dynamics in agro-ecosystems is affected by complex interactions of various factors including climate, soil and agricultural management practices, which hinders our understanding of the underlying mechanisms. The objectives of this study were to use the Agricultural Production Systems simulator (APSIM) model to simulate the long-term SOC dynamics under different management practices at four long-term experimental sites, Zhengzhou and Xuzhou with double cropping systems and Gongzhuling and Urtimqi with single cropping systems, located in northern China. Firstly, the model was calibrated using information from the sites and literature, and its performance to predict crop growth and SOC dynamics was examined. The calibrated model was then used to assess the impacts of different management practices, including fertilizer application, irrigation, and residue retention, on C dynamics in the top 30 cm of the soil by scenario modelling. Results indicate a significant SOC sequestration potential through improved management practices of nitrogen (N) fertilizer application, stubble retention, and irrigation. Optimal N fertilization (Nopt) and 100% stubble retention (R100) increased SOC by about 11.2%, 208.29%, and 283.67% under irrigation at Gongzhuling, Zhengzhou, and Xuzhou, respectively. Soil organic carbon decreased rapidly at lJriimqi under irrigation, which was due to the enhanced decomposition by increased soil moisture. Under rainfed condition, SOC remained at a higher level. The combination of Nopt and R100 increased SOC by about 0.46% under rainfed condition at /Jr/imqi. Generally, agricultural soils with double cropping systems (Zhengzhou and Xuzhou) showed a greater potential to sequester C than those with single cropping systems (Gongzhuling and Urumqi).展开更多
基金the funding support from the New Century Exceptional Talent Program of China(NCET-08-0797)the National High-Tech Research and Development Program of China(2013AA100404)+2 种基金the National Basic Research Program of China(2009CB118608)the CSIRO-Chinese Ministry of Education(MOE)PhD Research Fellowship Programthe Priority Academic Program Development of Jiangsu Higher Education Institutions,China
文摘The accurate assessment of the spatiotemporal changes in soil nutrients influenced by agricultural production provides the basis for development of management strategies to maintain soil fertility and balance soil nutrients. In this paper, we combined spatial measurements from 2 157 soil samples and geostatistical analysis to assess the spatiotemporal changes in soil organic carbon (SOC), total nitrogen (TN), available phosphorus (AP) and available potassium content (AK) from the first soil survey (in the 1980s) to the second soil survey (in the 2000s) in the Taihu region of Jiangsu Province in China. The results showed that average soil nutrients in three soil types all exhibited the increased levels in the 2000s (except for AK in the yellow brown soil). The standard deviation of soil nutrient contents increased (except for TN in the paddy soil). Agricultural production in the 20 years led to increases in SOC, TN, AP and AK by 74, 82, 89 and 65%, respectively, of the Taihu areas analyzed. From the 1980s to 2000s all the nugget/sill ratios of soil nutrients indices were between 25 and 75% (except for AK in the yellow brown soil in the 2000s), indicating moderate spatial dependence. The ratio of AP in the yellow brown soil in the 2000s was 88.74%, showing weak spatial dependence. The spatial correlation range values for SOC, TN, AP and AK in the 2000s all decreased. The main areas showing declines in SOC, TN and AP were in the northwest. For AK, the main region with declining levels was in the east and middle of western areas. Apparently, the increase in soil nutrients in the Taihu region can be mainly attributed to the large increase in fertilizer inputs, change in crop systems and enhanced residues management since the 1980s. Future emphasis should be placed on avoiding excess fertilizer inputs and balancing the effects of the fertilizers in soils.
基金Supported by the National Basic Research Program of China(No.2010CB950604)the National Natural Science Foundation of China(No.41075108)
文摘Improving management of soil organic carbon(SOC)has been considered as a substantial mitigation strategy to climate change.Management such as stubble retention(SR),conservation tillage(ZT),and fertilization are recommended for both promoting production and accumulating SOC.However,whether such management practices can cause net increase in SOC or just a slow-down of SOC decline largely depends on the current status of SOC for a given region.This paper synthesized the available SOC data in the croplands of China,and analysed the change of SOC in the top 20 cm soil as a result of management change.The results showed that,on average,SOC increased by 18.3%through SR,by 9.1%through ZT,and by 12.4%,36.9%and 41.5%through application of inorganic(IF),organic(OF)and combined inorganic and organic fertilizers(IOF),respectively,compared to those under stubble removal,conventional tillage and no fertilization.Under SR,ZT,IF,OF and IOF,SOC increased by 16.0%,10.2%,8.2%,32.2%and41.3%,respectively,at the end of the trials compared with the initial values at the start of the trials.Our analysis also showed that in Northeast and Northwest China,SOC in agricultural soils is still decreasing due to cultivation.In North and South China,however,SOC appears to have reached a new equilibrium of low SOC state after a long cultivation history,and soils have greater potential to sequester C.Our analysis highlights the need of taking account of the baseline status to assess the net soil C balance over time and space.
基金Supported by the National Basic Research Program(973 Program)of China(No.2010CB950604)the National Natural Science Foundation of China(No.41075108)
文摘Soil has been identified as a possible carbon (C) sink for sequestering atmospheric carbon dioxide (CO2). However, soil organic carbon (SOC) dynamics in agro-ecosystems is affected by complex interactions of various factors including climate, soil and agricultural management practices, which hinders our understanding of the underlying mechanisms. The objectives of this study were to use the Agricultural Production Systems simulator (APSIM) model to simulate the long-term SOC dynamics under different management practices at four long-term experimental sites, Zhengzhou and Xuzhou with double cropping systems and Gongzhuling and Urtimqi with single cropping systems, located in northern China. Firstly, the model was calibrated using information from the sites and literature, and its performance to predict crop growth and SOC dynamics was examined. The calibrated model was then used to assess the impacts of different management practices, including fertilizer application, irrigation, and residue retention, on C dynamics in the top 30 cm of the soil by scenario modelling. Results indicate a significant SOC sequestration potential through improved management practices of nitrogen (N) fertilizer application, stubble retention, and irrigation. Optimal N fertilization (Nopt) and 100% stubble retention (R100) increased SOC by about 11.2%, 208.29%, and 283.67% under irrigation at Gongzhuling, Zhengzhou, and Xuzhou, respectively. Soil organic carbon decreased rapidly at lJriimqi under irrigation, which was due to the enhanced decomposition by increased soil moisture. Under rainfed condition, SOC remained at a higher level. The combination of Nopt and R100 increased SOC by about 0.46% under rainfed condition at /Jr/imqi. Generally, agricultural soils with double cropping systems (Zhengzhou and Xuzhou) showed a greater potential to sequester C than those with single cropping systems (Gongzhuling and Urumqi).