Periodic density functional theory(DFT) calculations are presented to describe the adsorption and decomposition of CH3OH on Ru(0001) surfaces with different coverages, including p(3 ×2), p(2×2), and ...Periodic density functional theory(DFT) calculations are presented to describe the adsorption and decomposition of CH3OH on Ru(0001) surfaces with different coverages, including p(3 ×2), p(2×2), and p(2× 1) unit cells, corresponding to monolayer(ML) coverages of 1/6, 1/4, and 1/2, respectively. The geometries and energies of all species involved in methanol dissociation were analyzed, and the initial decomposition reactions of methanol and the subsequent dehydrogenations reactions of CH3O and CH2OH were all computed at 1/2, 1/4, and 1/6 ML coverage on the Ru(0001) surface. The results show that coverage exerts some effects on the stable adsorption of CH30, CH2OH, and CH3, that is, the lower the coverage, the stronger the adsorption. Coverage also exerts effects on the initial decomposition of methanol. C-H bond breakage is favored at 1/2 ML, whereas C-H and O--H bond cleavages are preferred at 1/4 and 1/6 ML on the Ru(0001) surface, respectively. At 1/4 ML coverage on the Ru(0001) surface, the overall reaction mechanism can be written as 9CH3OH ,3CH30+6CH2OH+9H ,6CH20+3CHOH+18H , 7CHO+COH+CH+OH+26H → 8CO+C+O+36H.展开更多
The reactivity of radical-molecular addition reaction was studied in terms of density-functional theory (DFT) and Hartree-Fock theory (HFT). It was found that the DFT method can give more accurate estimated result tha...The reactivity of radical-molecular addition reaction was studied in terms of density-functional theory (DFT) and Hartree-Fock theory (HFT). It was found that the DFT method can give more accurate estimated result than the HFT method. The reason might be that the energy of the highest occupied molecular orbital (HOMO) in DFT is not the ionization energy, but rather represents the change in the total energy with respect to the change in occupation number of electrons in the HOMO, consistent with the concept of the transition state. The energy of HOMO in HFT is the ionization energy, which may represent more properly the property of the products and reactants themselves.展开更多
On the basis of our recent studies on the molecular fuzzy point group symmetry,we further probe into the more complicated planar one-dimensional fuzzy periodic molecules-straight chain conjugate polyene.Except for the...On the basis of our recent studies on the molecular fuzzy point group symmetry,we further probe into the more complicated planar one-dimensional fuzzy periodic molecules-straight chain conjugate polyene.Except for the fuzzy translation transformation,the space transformation of the fuzzy screw rotation and the glide plane will be referred to.In addition,other fuzzy point symmetry transformation lain in the space transformation is discussed.Usually there is a correlation between the fuzzy symmetry characterization caused by the transition of the point symmetry elements and by certain space symmetry transformation.For the molecular orbital,the irreducible representation component is analyzed besides the membership function of the fuzzy symmetry transformation.Also,we inquire into the relativity between some molecular property and the fuzzy symmetry characterization.展开更多
The adsorption and decomposition mechanisms of methylamine catalyzed by Pt4 cluster supported on ruffle(110) titania[namely, Pt4/TiO2-R(110)] were investigated via density functional theory slab calculations with ...The adsorption and decomposition mechanisms of methylamine catalyzed by Pt4 cluster supported on ruffle(110) titania[namely, Pt4/TiO2-R(110)] were investigated via density functional theory slab calculations with Hubbard corrections(DFT+U). The adsorption energies under the most stable configuration of the possible species and the energy barriers of the possible elementary reactions involved in methylamine decomposition were obtained. Through systematic calculations for the reaction mechanism of methylamine decomposition on the PtVTiO2-R(110), the most possible decomposition path is CHaNH2→CH2NH2+H→CH2NH+2H→CHNH+3H→HCN+4H→CN+5H, which is similar to that of methylamine dissociation catalyzed by Pt(100) surface.展开更多
基金Supported by the Key Program of Natural Science of Tianjin, China(No. 13JCZDJC26800), the National Natural Science Foundation of China(Nos.21503122, 21346002), the Shanxi Province Science Foundation for Youths, China(No.2014021016-2), the Scientific and Technological Programs in Shanxi Province, China(No.2015031017) and the Foundation of Key Laboratory of Advanced Energy Materials Chemistry of Ministry of Education of China.
文摘Periodic density functional theory(DFT) calculations are presented to describe the adsorption and decomposition of CH3OH on Ru(0001) surfaces with different coverages, including p(3 ×2), p(2×2), and p(2× 1) unit cells, corresponding to monolayer(ML) coverages of 1/6, 1/4, and 1/2, respectively. The geometries and energies of all species involved in methanol dissociation were analyzed, and the initial decomposition reactions of methanol and the subsequent dehydrogenations reactions of CH3O and CH2OH were all computed at 1/2, 1/4, and 1/6 ML coverage on the Ru(0001) surface. The results show that coverage exerts some effects on the stable adsorption of CH30, CH2OH, and CH3, that is, the lower the coverage, the stronger the adsorption. Coverage also exerts effects on the initial decomposition of methanol. C-H bond breakage is favored at 1/2 ML, whereas C-H and O--H bond cleavages are preferred at 1/4 and 1/6 ML on the Ru(0001) surface, respectively. At 1/4 ML coverage on the Ru(0001) surface, the overall reaction mechanism can be written as 9CH3OH ,3CH30+6CH2OH+9H ,6CH20+3CHOH+18H , 7CHO+COH+CH+OH+26H → 8CO+C+O+36H.
基金the Foundation of State Key Laboratory of Coal Conversion.
文摘The reactivity of radical-molecular addition reaction was studied in terms of density-functional theory (DFT) and Hartree-Fock theory (HFT). It was found that the DFT method can give more accurate estimated result than the HFT method. The reason might be that the energy of the highest occupied molecular orbital (HOMO) in DFT is not the ionization energy, but rather represents the change in the total energy with respect to the change in occupation number of electrons in the HOMO, consistent with the concept of the transition state. The energy of HOMO in HFT is the ionization energy, which may represent more properly the property of the products and reactants themselves.
文摘On the basis of our recent studies on the molecular fuzzy point group symmetry,we further probe into the more complicated planar one-dimensional fuzzy periodic molecules-straight chain conjugate polyene.Except for the fuzzy translation transformation,the space transformation of the fuzzy screw rotation and the glide plane will be referred to.In addition,other fuzzy point symmetry transformation lain in the space transformation is discussed.Usually there is a correlation between the fuzzy symmetry characterization caused by the transition of the point symmetry elements and by certain space symmetry transformation.For the molecular orbital,the irreducible representation component is analyzed besides the membership function of the fuzzy symmetry transformation.Also,we inquire into the relativity between some molecular property and the fuzzy symmetry characterization.
基金Supported by the National Natural Science Foundation of China(Nos.21503122, 21346002), the Shanxi Province Science Foundation for Youths, China(No.2014021016-2), the Scientific and Technological Programs in Shanxi Province, China(No. 2015031017), the Industrial and Technological Programs in Datong City, China(No.2015022) and the Foundation of Key Laboratory of Advanced Energy Materials Chemistry of the Ministry of Education of China.
文摘The adsorption and decomposition mechanisms of methylamine catalyzed by Pt4 cluster supported on ruffle(110) titania[namely, Pt4/TiO2-R(110)] were investigated via density functional theory slab calculations with Hubbard corrections(DFT+U). The adsorption energies under the most stable configuration of the possible species and the energy barriers of the possible elementary reactions involved in methylamine decomposition were obtained. Through systematic calculations for the reaction mechanism of methylamine decomposition on the PtVTiO2-R(110), the most possible decomposition path is CHaNH2→CH2NH2+H→CH2NH+2H→CHNH+3H→HCN+4H→CN+5H, which is similar to that of methylamine dissociation catalyzed by Pt(100) surface.