This paper discusses the relationship between the volume loss, fluid flow and component variations in the ductile shear zone of the southern Tan-Lu fault belt. The results show that there is a large amount of fluids f...This paper discusses the relationship between the volume loss, fluid flow and component variations in the ductile shear zone of the southern Tan-Lu fault belt. The results show that there is a large amount of fluids flowing through the shear zone during mylonitization, accompanied with the loss of volume of rocks and variations of elements and oxygen isotopes. The calculated temperature for mylonitization in different mylonites ranges from 446 to 484℃, corresponding to that of 475 to 500℃ for the wall rocks. The condition of differential stress during mylonization has been obtained between 99 and 210 MPa, whereas the differential stress in the wall rock gneiss is 70-78 MPa. The mylonites are enriched by factors of 1.32-1.87 in elements such as TiO2, P2O5, MnO, Y, Zr and V and depleted in SiO2, Na2O, K2O, Al203, Sr, Rb and light REEs compared to their protolith gneiss. The immobile element enrichments are attributed to enrichments in residual phases such as ilmentite, zircon, apatite and epidote in mylonites and are interpreted as due to volume losses from 15% to 60% in the ductile shear zone. The largest amount of SiO2 loss is 35.76 g/100 g in the ductile shear zone, which shows the fluid infiltration. Modeling calculated results of the fluid/rock ratio for the ductile shear zone range from 196 to 1192 by assuming different degrees of fluid saturation. Oxygen isotope changes of quartz and feldspar and the calculated fluid are corresponding to the variations of differential flow stress in the ductile shear zone. With increasing differential flow stress, the mylonites show a slight decrease of δ^18O in quartz, K-feldspar and fluid.展开更多
On the basis of field geology, three typical ductile shear zones in the southern part of the Tancheng-Lujiang fault belt have been chosen for a detailed study. Altogether ten samples of the tectonites have been collec...On the basis of field geology, three typical ductile shear zones in the southern part of the Tancheng-Lujiang fault belt have been chosen for a detailed study. Altogether ten samples of the tectonites have been collected for this study. The paper is focused on a comprehensive study of the tectonites in the medium-lower horizons of the ductile shear zones. The mineral compositions of the rocks are analyzed with EPMA and some typical whole-rock samples analyzed by chemical and ICP methods. Based on the comprehensive study of the characteristics of the deformation, the mineral assemblages and the changes of chemical composition of the bulk rocks, this paper presents a discussion on the relationship between the volume loss, the fluid flow and compositional changes during mylonitization of the ductile shear zones in this region. Our study shows that there are a large amount of fluids flowing through the shear zones during the process of mylonization, accompanied by the loss of rock volume and migration of elements and components. Modelling calculation results under different saturation conditions of fluids show that the maximum volume loss of the tectonites is about 60% relative to their protolith, while the fluid/rock ratio ranges from 10 to 103 in different ductile shear zones.展开更多
基金National Natural Science Foundation of China (Grant 40473021) the National 973- Project of the Ministry of Science and Technology of China (2003CB214600) the Foundation of the State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, and the jointed project of Max-Planck-Institute of Society and Chinese Academy of Sciences in Max-Planck-Institute of Nuclear Physics,Heidelberg, Germany.
文摘This paper discusses the relationship between the volume loss, fluid flow and component variations in the ductile shear zone of the southern Tan-Lu fault belt. The results show that there is a large amount of fluids flowing through the shear zone during mylonitization, accompanied with the loss of volume of rocks and variations of elements and oxygen isotopes. The calculated temperature for mylonitization in different mylonites ranges from 446 to 484℃, corresponding to that of 475 to 500℃ for the wall rocks. The condition of differential stress during mylonization has been obtained between 99 and 210 MPa, whereas the differential stress in the wall rock gneiss is 70-78 MPa. The mylonites are enriched by factors of 1.32-1.87 in elements such as TiO2, P2O5, MnO, Y, Zr and V and depleted in SiO2, Na2O, K2O, Al203, Sr, Rb and light REEs compared to their protolith gneiss. The immobile element enrichments are attributed to enrichments in residual phases such as ilmentite, zircon, apatite and epidote in mylonites and are interpreted as due to volume losses from 15% to 60% in the ductile shear zone. The largest amount of SiO2 loss is 35.76 g/100 g in the ductile shear zone, which shows the fluid infiltration. Modeling calculated results of the fluid/rock ratio for the ductile shear zone range from 196 to 1192 by assuming different degrees of fluid saturation. Oxygen isotope changes of quartz and feldspar and the calculated fluid are corresponding to the variations of differential flow stress in the ductile shear zone. With increasing differential flow stress, the mylonites show a slight decrease of δ^18O in quartz, K-feldspar and fluid.
基金This study was supported by the National Key Project "Study of the Natural Gas Fault System in the Tancheng-Lujiang Fault Belt (No. 95-101-01)" of the Ninth Five-Year Plan Period and the National Natural Science Foundation of China Grant 48970172.
文摘On the basis of field geology, three typical ductile shear zones in the southern part of the Tancheng-Lujiang fault belt have been chosen for a detailed study. Altogether ten samples of the tectonites have been collected for this study. The paper is focused on a comprehensive study of the tectonites in the medium-lower horizons of the ductile shear zones. The mineral compositions of the rocks are analyzed with EPMA and some typical whole-rock samples analyzed by chemical and ICP methods. Based on the comprehensive study of the characteristics of the deformation, the mineral assemblages and the changes of chemical composition of the bulk rocks, this paper presents a discussion on the relationship between the volume loss, the fluid flow and compositional changes during mylonitization of the ductile shear zones in this region. Our study shows that there are a large amount of fluids flowing through the shear zones during the process of mylonization, accompanied by the loss of rock volume and migration of elements and components. Modelling calculation results under different saturation conditions of fluids show that the maximum volume loss of the tectonites is about 60% relative to their protolith, while the fluid/rock ratio ranges from 10 to 103 in different ductile shear zones.