The scheduling algorithm based on the three-way handshaking scheme in IEEE 802.16d-2004 standard has some serious problems because of the complexity of the algorithm and low scheduling efficiency. To enhance the sched...The scheduling algorithm based on the three-way handshaking scheme in IEEE 802.16d-2004 standard has some serious problems because of the complexity of the algorithm and low scheduling efficiency. To enhance the scheduling efficiency and improve the performance of multi-hop wireless mesh networks (WMNs), one distributed scheduling algorithm that can maximize the spatial and time reuse with an interference-based network model is proposed. Compared to the graph-based network model, the proposed network model can achieve a better throughput performance with maximal spatial reuse. Furthermore, this proposed scheduling algorithm also keeps fairly scheduling to all links, with a priority-based polling policy. Both the theoretical analysis and simulation results show that this proposed distributed scheduling algorithm is simple and efficient.展开更多
Some scheduling algorithms have been designed to improve the performance of multi-hop wireless mesh networks (WMNs) recently. However the end-to-end delay is seldom considered as the complexity of multi-hop topology...Some scheduling algorithms have been designed to improve the performance of multi-hop wireless mesh networks (WMNs) recently. However the end-to-end delay is seldom considered as the complexity of multi-hop topology and open wireless shared channel. This article proposes an efficient delay based scheduling algorithm with the concept of buffer-data- hops. Considering the demand satisfaction factor(DSF), the proposed algorithm can also achieve a good fairness performance. Moreover, with the interference-based network model, the scheduling algorithm can maximize the spatial reuse, compared to those graph-based scheduling algorithms. Detailed theoretical analysis shows that the algorithm can minimize the end-to-end delay and make a fair scheduling to all the links.展开更多
基金This work is supported by the National Natural Science Foundation of China (60572120, 60602058);the Hi-Tech Research and Development Program of China (2006AA01Z257).
文摘The scheduling algorithm based on the three-way handshaking scheme in IEEE 802.16d-2004 standard has some serious problems because of the complexity of the algorithm and low scheduling efficiency. To enhance the scheduling efficiency and improve the performance of multi-hop wireless mesh networks (WMNs), one distributed scheduling algorithm that can maximize the spatial and time reuse with an interference-based network model is proposed. Compared to the graph-based network model, the proposed network model can achieve a better throughput performance with maximal spatial reuse. Furthermore, this proposed scheduling algorithm also keeps fairly scheduling to all links, with a priority-based polling policy. Both the theoretical analysis and simulation results show that this proposed distributed scheduling algorithm is simple and efficient.
基金the National Natural Science Foundation of China(60572120,60602058)the Hi-Tech Research and Development Program of China(2006AA01Z257).
文摘Some scheduling algorithms have been designed to improve the performance of multi-hop wireless mesh networks (WMNs) recently. However the end-to-end delay is seldom considered as the complexity of multi-hop topology and open wireless shared channel. This article proposes an efficient delay based scheduling algorithm with the concept of buffer-data- hops. Considering the demand satisfaction factor(DSF), the proposed algorithm can also achieve a good fairness performance. Moreover, with the interference-based network model, the scheduling algorithm can maximize the spatial reuse, compared to those graph-based scheduling algorithms. Detailed theoretical analysis shows that the algorithm can minimize the end-to-end delay and make a fair scheduling to all the links.