直流母线上双极短路故障是柔性直流输电系统最为严重的故障。目前针对模块化多电平换流器的高压直流输电(MMC-HVDC,modular multilevel converter based HVDC)系统故障的研究大多数侧重于故障的保护,而对于故障电流特性的研究只是简单...直流母线上双极短路故障是柔性直流输电系统最为严重的故障。目前针对模块化多电平换流器的高压直流输电(MMC-HVDC,modular multilevel converter based HVDC)系统故障的研究大多数侧重于故障的保护,而对于故障电流特性的研究只是简单的仿真分析。因此为了能够准确分析系统直流侧暂态故障电流的特性,通过对短路故障的暂态特性建立数学模型,进而分析MMC-HVDC系统直流母线上双极短路故障的暂态特性,推导出故障电流的数学表达式,并提出利用比例因子的方法来改进等效电容值,从而使故障电流计算值更精确。在PSCAD/EMTDC中搭建双端MMC-HVDC系统,对实验仿真波形与计算波形进行比较和分析,验证了所提方法的可行性与精确性。展开更多
文摘基于密度泛函理论,在B3LYP/6-311++G(d,p)水平对新精神活性物质乙卡西酮进行结构优化,并在相同水平计算了其拉曼光谱和红外光谱.使用标准样品,实验测定了乙卡西酮的拉曼光谱和红外光谱,实验结果与理论计算非常吻合.势能分布(Potential energy distribution,PED)分析对谱峰进行了归属,实验和理论研究对照表明,乙卡西酮的拉曼特征峰为1001、1599、1694、2891、2936和3071 cm-1;红外吸收特征峰为698、1694、2734和2934 cm-1.研究发现,乙卡西酮苯环结构、C=O对拉曼光谱和红外光谱影响较为明显,而拉曼光谱结合红外光谱将更加有助于卡西酮类物质的鉴定,取代基团对光谱的贡献是区分卡西酮类物质的关键.本研究提供了乙卡西酮的拉曼光谱和红外光谱,并对其进行了归属,研究将对乙卡西酮及其它卡西酮类物质的光谱法快速鉴定提供重要借鉴和参考.
文摘直流母线上双极短路故障是柔性直流输电系统最为严重的故障。目前针对模块化多电平换流器的高压直流输电(MMC-HVDC,modular multilevel converter based HVDC)系统故障的研究大多数侧重于故障的保护,而对于故障电流特性的研究只是简单的仿真分析。因此为了能够准确分析系统直流侧暂态故障电流的特性,通过对短路故障的暂态特性建立数学模型,进而分析MMC-HVDC系统直流母线上双极短路故障的暂态特性,推导出故障电流的数学表达式,并提出利用比例因子的方法来改进等效电容值,从而使故障电流计算值更精确。在PSCAD/EMTDC中搭建双端MMC-HVDC系统,对实验仿真波形与计算波形进行比较和分析,验证了所提方法的可行性与精确性。