An experimental investigation was conducted to evaluate the effect of symmetrical plasma actuators on turbulent boundary layer separation control at high Reynolds number. Compared with the traditional control method o...An experimental investigation was conducted to evaluate the effect of symmetrical plasma actuators on turbulent boundary layer separation control at high Reynolds number. Compared with the traditional control method of plasma actuator, the whole test model was made of aluminum and acted as a covered electrode of the symmetrical plasma actuator. The experimental study of plasma actuators' effect on surrounding air, a canonical zero-pressure gradient turbulent boundary, was carried out using particle image velocimetry (PIV) and laser Doppler velocimetry (LDV) in the 0.75 m × 0.75 m low speed wind tunnel to reveal the symmetrical plasma actuator characterization in an external flow. A half model of wing-body configuration was experimentally investigated in the 3.2 m low speed wind tunnel with a six-component strain gauge balance and PIV. The results show that the turbulent boundary layer separation of wing can be obviously suppressed and the maximum lift coefficient is improved at high Reynolds number with the symmetrical plasma actuator. It turns out that the maximum lift coefficient increased by approximately 8.98% and the stall angle of attack was delayed by approximately 2° at Reynolds number 2 ×10……6. The effective mechanism for the turbulent separation control by the symmetrical plasma actuators is to induce the vortex near the wing surface which could create the relatively large- scale disturbance and promote momentum mixing between low speed flow and main flow regions.展开更多
The present paper described an experimental investigation of separation control of an Unmanned Aerial Vehicle(UAV)at high wind speeds.The plasma actuator was based on Dielectric Barrier Discharge(DBD)and operated in a...The present paper described an experimental investigation of separation control of an Unmanned Aerial Vehicle(UAV)at high wind speeds.The plasma actuator was based on Dielectric Barrier Discharge(DBD)and operated in a steady manner.The flow over a wing of UAV was performed with smoke flow visualization in theΦ0.75 m low speed wind tunnel to reveal the flow structure over the wing so that the locations of plasma actuators could be optimized.A full model of the UAV was experimentally investigated in theΦ3.2 m low speed wind tunnel using a six-component internal strain gauge balance.The effects of the key parameters,including the locations of the plasma actuators,the applied voltage amplitude and the operating frequency,were obtained.The whole test model was made of aluminium and acted as a cathode of the actuator.The results showed that the plasma acting on the surface of UAV could obviously suppress the boundary layer separation and reduce the model vibration at the high wind speeds.It was found that the maximum lift coefficient of the UAV was increased by 2.5%and the lift/drag ratio was increased by about 80%at the wind speed of 100 m/s.The control mechanism of the plasma actuator at the test configuration was also analyzed.展开更多
基金supported by the Exploration Foundation of Weapon Systems (No.7130711)
文摘An experimental investigation was conducted to evaluate the effect of symmetrical plasma actuators on turbulent boundary layer separation control at high Reynolds number. Compared with the traditional control method of plasma actuator, the whole test model was made of aluminum and acted as a covered electrode of the symmetrical plasma actuator. The experimental study of plasma actuators' effect on surrounding air, a canonical zero-pressure gradient turbulent boundary, was carried out using particle image velocimetry (PIV) and laser Doppler velocimetry (LDV) in the 0.75 m × 0.75 m low speed wind tunnel to reveal the symmetrical plasma actuator characterization in an external flow. A half model of wing-body configuration was experimentally investigated in the 3.2 m low speed wind tunnel with a six-component strain gauge balance and PIV. The results show that the turbulent boundary layer separation of wing can be obviously suppressed and the maximum lift coefficient is improved at high Reynolds number with the symmetrical plasma actuator. It turns out that the maximum lift coefficient increased by approximately 8.98% and the stall angle of attack was delayed by approximately 2° at Reynolds number 2 ×10……6. The effective mechanism for the turbulent separation control by the symmetrical plasma actuators is to induce the vortex near the wing surface which could create the relatively large- scale disturbance and promote momentum mixing between low speed flow and main flow regions.
基金supported by the Exploration Foundation of Weapon Systems(Grant No.7130711)
文摘The present paper described an experimental investigation of separation control of an Unmanned Aerial Vehicle(UAV)at high wind speeds.The plasma actuator was based on Dielectric Barrier Discharge(DBD)and operated in a steady manner.The flow over a wing of UAV was performed with smoke flow visualization in theΦ0.75 m low speed wind tunnel to reveal the flow structure over the wing so that the locations of plasma actuators could be optimized.A full model of the UAV was experimentally investigated in theΦ3.2 m low speed wind tunnel using a six-component internal strain gauge balance.The effects of the key parameters,including the locations of the plasma actuators,the applied voltage amplitude and the operating frequency,were obtained.The whole test model was made of aluminium and acted as a cathode of the actuator.The results showed that the plasma acting on the surface of UAV could obviously suppress the boundary layer separation and reduce the model vibration at the high wind speeds.It was found that the maximum lift coefficient of the UAV was increased by 2.5%and the lift/drag ratio was increased by about 80%at the wind speed of 100 m/s.The control mechanism of the plasma actuator at the test configuration was also analyzed.