The deformation measurement of electrosynthesized polythiophene(Pth) thin films is difficult because of the small thickness and highflexibility of the specimen. An electronic speckle patterninterferom- etry (ESPI) met...The deformation measurement of electrosynthesized polythiophene(Pth) thin films is difficult because of the small thickness and highflexibility of the specimen. An electronic speckle patterninterferom- etry (ESPI) method is used to measure the deformation ofPth films of thicknesses in the range of 4-65 μm . Theirstress-strain curves are obtained. It is found that the mechanicalproperties of Pth films are sensitive to the specimen thickness. Thetensile strength increases with decreasing thickness of thin filmfrom 10 μm. The influence of the electrochemical synthesisconditions on the mechanical properties of Pth films is also dis-Cussed.展开更多
Tensile deformation and fracture characteristics of polyimide/montmorillonite nanocomposite films are investigated to enhance the particular mechanical properties and understand the effective factors in dominating the...Tensile deformation and fracture characteristics of polyimide/montmorillonite nanocomposite films are investigated to enhance the particular mechanical properties and understand the effective factors in dominating the mechanical properties of nanocomposites, such as the nanolayer, matrix and nanolayer/matrix interface. How to contribute to the mechanical properties of nanocomposite film is a very complex problem. In this paper, these factors are analyzed based on the addition amount and fracture mechanics. The results indicate that the specimen at 20 wt% MMT breaks prematurely with a fracture strength (σb = 78 MPa) much lower than that (σb = 128 MPa) at the 1 wt% MMT. However, the Young's modulus (3.2 GPa) of the former is higher than that (1.9 GPa) of the latter. Fractography also indicates that the brittle cracking formed in high content addition is the main cause of failure but microscopically ductile fracture morphology still exists locally. And for the trace element addition, the smaller threading slipping veins are evenly distributed on the entire fracture section of these films. Therefore, these characteristics would presumably be associated with both the concentration effects of size of nanocomposite sheets and the increasing deformation harmony in nanolayers.展开更多
The failure of thin film-substrate structure occurs mainly at the thin film or the interface. However, the characterizing and estimating methods of failure stress in thin film are neither uniform nor effective because...The failure of thin film-substrate structure occurs mainly at the thin film or the interface. However, the characterizing and estimating methods of failure stress in thin film are neither uniform nor effective because there are some complex effects of such as size, interface and stress state on the failure behavior of thin film-substrate structure. Based on the scanning electron microscope (SEM) in-situ in- vestigation on the failure models of the Cu thin film-substrate structure and the nano scratched testing results, the failure stresses in different thicknesses of the Cu film-substrate were characterized, which were compared and confirmed by other methods, such as Stoney formula and other empiric equations. These results indicate that the novel estimating method of failure stress in thin film based on the critical wavelength of surface unstable analysis is better than other methods. The main reason is that the novel estimating method of failure stress in meso thickness film fully considered the effect factors of free surface unstable behavior and elastic anisotropy of thin film. Therefore, the novel estimating method of failure stress assists people to understand the critical interfacial strength and to set up the failure criterion of thin film-substrate structure.展开更多
基金the Basic-Research Foundation of Tsinghua University(JC2000057)the Visiting Scholar Foundation of Solid Mechanical Key Lab in Tongji University of the Ministry of Education of China
文摘The deformation measurement of electrosynthesized polythiophene(Pth) thin films is difficult because of the small thickness and highflexibility of the specimen. An electronic speckle patterninterferom- etry (ESPI) method is used to measure the deformation ofPth films of thicknesses in the range of 4-65 μm . Theirstress-strain curves are obtained. It is found that the mechanicalproperties of Pth films are sensitive to the specimen thickness. Thetensile strength increases with decreasing thickness of thin filmfrom 10 μm. The influence of the electrochemical synthesisconditions on the mechanical properties of Pth films is also dis-Cussed.
基金Project supported by the National Basic Research Program of China (No.2004CB619304)the Hundred TalentsProgram of Chinese Academy of Sciences, Key Research Programme of Beijing City Science and Technology Committee(No.H020420020230).
文摘Tensile deformation and fracture characteristics of polyimide/montmorillonite nanocomposite films are investigated to enhance the particular mechanical properties and understand the effective factors in dominating the mechanical properties of nanocomposites, such as the nanolayer, matrix and nanolayer/matrix interface. How to contribute to the mechanical properties of nanocomposite film is a very complex problem. In this paper, these factors are analyzed based on the addition amount and fracture mechanics. The results indicate that the specimen at 20 wt% MMT breaks prematurely with a fracture strength (σb = 78 MPa) much lower than that (σb = 128 MPa) at the 1 wt% MMT. However, the Young's modulus (3.2 GPa) of the former is higher than that (1.9 GPa) of the latter. Fractography also indicates that the brittle cracking formed in high content addition is the main cause of failure but microscopically ductile fracture morphology still exists locally. And for the trace element addition, the smaller threading slipping veins are evenly distributed on the entire fracture section of these films. Therefore, these characteristics would presumably be associated with both the concentration effects of size of nanocomposite sheets and the increasing deformation harmony in nanolayers.
基金Supported by the National Natural Science Foundation of China (Grant No. 10772091) National Basic Research Program of China (Grant Nos. 2004CB619304-5, 2007CB936803)
文摘The failure of thin film-substrate structure occurs mainly at the thin film or the interface. However, the characterizing and estimating methods of failure stress in thin film are neither uniform nor effective because there are some complex effects of such as size, interface and stress state on the failure behavior of thin film-substrate structure. Based on the scanning electron microscope (SEM) in-situ in- vestigation on the failure models of the Cu thin film-substrate structure and the nano scratched testing results, the failure stresses in different thicknesses of the Cu film-substrate were characterized, which were compared and confirmed by other methods, such as Stoney formula and other empiric equations. These results indicate that the novel estimating method of failure stress in thin film based on the critical wavelength of surface unstable analysis is better than other methods. The main reason is that the novel estimating method of failure stress in meso thickness film fully considered the effect factors of free surface unstable behavior and elastic anisotropy of thin film. Therefore, the novel estimating method of failure stress assists people to understand the critical interfacial strength and to set up the failure criterion of thin film-substrate structure.