There are problems such as incomplete edges and poor noise suppression when a single fixed morphological structuring element is used to detect the edges in remote sensing images. For this reason, a morphological edge ...There are problems such as incomplete edges and poor noise suppression when a single fixed morphological structuring element is used to detect the edges in remote sensing images. For this reason, a morphological edge detection method for remote sensing image based on variable structuring element is proposed. Firstly, the structuring elements with different scales and multiple directions are constructed according to the diversity of remote sensing imagery targets. In order to suppress the noise of the target background and highlight the edge of the image target in the remote sensing image by adaptive Top hat and Bottom hat transform, the corresponding adaptive morphological operations are constructed based on variable structuring elements; Secondly, adaptive morphological edge detection is used to obtain multiple images with different scales and directional edge features; Finally, the image edges are obtained by weighted summation of each direction edge, and then the least square is used to fit the edges for accurate location of the edge contour of the target. The experimental results show that the proposed method not only can detect the complete edge of remote sensing image, but also has high edge detection accuracy and superior anti-noise performance. Compared with classical edge detection and the morphological edge detection with a fixed single structuring element, the proposed method performs better in edge detection effect, and the accuracy of detection can reach 95 %展开更多
Traditional coupled multi-disciplinary design optimization based on computational fluid dynamics/computational structure dynamics(CFD/CSD)aims to optimize the jig shape of aircraft,and general multi-disciplinary desig...Traditional coupled multi-disciplinary design optimization based on computational fluid dynamics/computational structure dynamics(CFD/CSD)aims to optimize the jig shape of aircraft,and general multi-disciplinary design optimization methodology is adopted.No special consideration is given to the aircraft itself during the optimization.The main drawback of these methodologies is the huge expanse and the low efficiency.To solve this problem,we put forward to optimize the cruise shape directly based on the fact that the cruise shape can be transformed into jig shape,and a methodology named reverse iteration of structural model(RISM)is proposed to get the aero-structural performance of cruise shape.The main advantage of RISM is that the efficiency can be improved by at least four times compared with loosely-coupled aeroelastic analysis and it maintains almost the same fidelity of loosely-coupled aeroelastic analysis.An optimization framework based on RISM is proposed.The aerodynamic and structural performances can be optimized simultaneously in this framework,so it may lead to the true optimal solution.The aerodynamic performance was predicted by N-S solver in this paper.Test shows that RISM predicts the aerodynamic and structural performances very well.A wing-body configuration was optimized by the proposed optimization framework.The drag and weight of the aircraft are decreased after optimization,which shows the effectiveness of the proposed framework.展开更多
基金National Natural Science Foundation of China(No.61761027)Postgraduate Education Reform Project of Lanzhou Jiaotong University(No.1600120101)
文摘There are problems such as incomplete edges and poor noise suppression when a single fixed morphological structuring element is used to detect the edges in remote sensing images. For this reason, a morphological edge detection method for remote sensing image based on variable structuring element is proposed. Firstly, the structuring elements with different scales and multiple directions are constructed according to the diversity of remote sensing imagery targets. In order to suppress the noise of the target background and highlight the edge of the image target in the remote sensing image by adaptive Top hat and Bottom hat transform, the corresponding adaptive morphological operations are constructed based on variable structuring elements; Secondly, adaptive morphological edge detection is used to obtain multiple images with different scales and directional edge features; Finally, the image edges are obtained by weighted summation of each direction edge, and then the least square is used to fit the edges for accurate location of the edge contour of the target. The experimental results show that the proposed method not only can detect the complete edge of remote sensing image, but also has high edge detection accuracy and superior anti-noise performance. Compared with classical edge detection and the morphological edge detection with a fixed single structuring element, the proposed method performs better in edge detection effect, and the accuracy of detection can reach 95 %
基金supported by the National Natural Science Foundation of China(Grant Nos.11272005,10902082 and 91016008)the Funds for the Central Universities(Grant No.xjj2014135)partially supported by the open project of State Key Laboratory for Strength and Vibration of Mechanical Structures of Xi’an Jiaotong University(SV2014-KF-10)
文摘Traditional coupled multi-disciplinary design optimization based on computational fluid dynamics/computational structure dynamics(CFD/CSD)aims to optimize the jig shape of aircraft,and general multi-disciplinary design optimization methodology is adopted.No special consideration is given to the aircraft itself during the optimization.The main drawback of these methodologies is the huge expanse and the low efficiency.To solve this problem,we put forward to optimize the cruise shape directly based on the fact that the cruise shape can be transformed into jig shape,and a methodology named reverse iteration of structural model(RISM)is proposed to get the aero-structural performance of cruise shape.The main advantage of RISM is that the efficiency can be improved by at least four times compared with loosely-coupled aeroelastic analysis and it maintains almost the same fidelity of loosely-coupled aeroelastic analysis.An optimization framework based on RISM is proposed.The aerodynamic and structural performances can be optimized simultaneously in this framework,so it may lead to the true optimal solution.The aerodynamic performance was predicted by N-S solver in this paper.Test shows that RISM predicts the aerodynamic and structural performances very well.A wing-body configuration was optimized by the proposed optimization framework.The drag and weight of the aircraft are decreased after optimization,which shows the effectiveness of the proposed framework.