A monolithic hybrid fuel cell (MHFC) with a novel configuration was proposed in an effort to improve the fuel cell performance during instantaneous power changes. A modified direct methanol fuel cell (DMFC) with a lay...A monolithic hybrid fuel cell (MHFC) with a novel configuration was proposed in an effort to improve the fuel cell performance during instantaneous power changes. A modified direct methanol fuel cell (DMFC) with a layer of hydrous ruthenium dioxide (RuO2·xH2O) sandwiched between the anode catalyst layer and membrane was used to demonstrate the principle of the MHFC. Experimental results indicate that the RuO2·xH2O layer is equivalent to a resistor-capacitor transmission line and functions similar to a capacitor in parallel with the anode electrode. The improvement in dynamic response of the MHFC was experimentally confirmed under step current change and square current pulse operating. The ionic conductivity of the RuO2·xH2O layer was also obtained.展开更多
文摘A monolithic hybrid fuel cell (MHFC) with a novel configuration was proposed in an effort to improve the fuel cell performance during instantaneous power changes. A modified direct methanol fuel cell (DMFC) with a layer of hydrous ruthenium dioxide (RuO2·xH2O) sandwiched between the anode catalyst layer and membrane was used to demonstrate the principle of the MHFC. Experimental results indicate that the RuO2·xH2O layer is equivalent to a resistor-capacitor transmission line and functions similar to a capacitor in parallel with the anode electrode. The improvement in dynamic response of the MHFC was experimentally confirmed under step current change and square current pulse operating. The ionic conductivity of the RuO2·xH2O layer was also obtained.