The wheatgrass, Thinopyrum intermedium (Host) Barkworth & DR Dewey, shows many beneficial characteristics, such as big spikes and high resistance to many diseases. To transfer the beneficial genes of this species, ...The wheatgrass, Thinopyrum intermedium (Host) Barkworth & DR Dewey, shows many beneficial characteristics, such as big spikes and high resistance to many diseases. To transfer the beneficial genes of this species, many wheat- Thinopyrum intermedium alien chromosome lines were developed. Of them, Shannong 0095 (SN0095), a disomic substitution, has long spikes and flag-leaves, and thus may be an important genetic resource for wheat yield improvement. In order to realize its heterosis and combining ability on major yield traits, a 7 ×7 complete diallel design was made according to Griffing's Method-1. The results showed that heterosis for spike length (SPL), flag-leaf area (FLA), number of spikes per plant (NSP), number of spikelets per spike (NSL), kernels per spike (KPS), 1 000-kernel weight (TKW) and grain yield per plant (GYP) existed in all the crosses by SN0095, but heterobeltiosis occurred only for KPS, TKW, and GYP. The relative mid-parent heterosis (RMH) and relative high-parent heterosis (RHH) for GYP, which valued as high as 35.32 and 29.92% respectively, were the highest among all the traits mearsured. Though additive and non-additive gene effects and cytoplasmic effects (or cytoplasmic-nuclear interaction effects) were found in governing all the traits measured above, additive gene action played a predominant role. The results also showed that SN0095 was the best-general combiner for SPL and FLA, and high-general combiner for NSP amongst all the parents. Estimates of specific combining ability (SCA) showed that SN0095 could also make high-SCA combinations for GYP, such as SN0095 × Jimai 19 (JMI9). SN0095 could be a unique and important parent in hybrid wheat breeding programs.展开更多
In order to clarify the transmission of the rye chromosome 1R in winter wheat germplasm Aimengniu and its derivatives, 17 derivatives and 7 types of Aimengniu were examined through molecular-marker technology. The res...In order to clarify the transmission of the rye chromosome 1R in winter wheat germplasm Aimengniu and its derivatives, 17 derivatives and 7 types of Aimengniu were examined through molecular-marker technology. The results showed that the chromosome arm 1RS of Neuzucht was transmitted to 5 of the 7 types of Aimengniu, i.e., Aimengniu Ⅱ and Aimengniu Ⅳ-Aimengniu VII, no segment of t RS was identified in Aimengniu Ⅰ or Aimengniu Ⅲ. As for the 17 derivatives, the 1RS chromosome arm of Aimengniu was transmitted to 11 derivatives, part segments of 1RS were found in 1 derivative, while no segment was found in the remaining 5 ones. The results provided the evidence that molecular-marker technology was an efficient approach and suitable for analysis of the transmission of chromosome 1R.展开更多
Wave shapes that induce velocity skewness and acceleration asymmetry are usually responsible for onshore sediment transport, whereas undertow and bottom slope effect normally contribute to offshore sediment transport....Wave shapes that induce velocity skewness and acceleration asymmetry are usually responsible for onshore sediment transport, whereas undertow and bottom slope effect normally contribute to offshore sediment transport. By incorporating these counteracting driving forces in a phase-averaged manner, the theoretically-based quasi-steady formula of Wang (2007) is modified to predict the magnitude and direction of net cross-shore total load transport under the coaction of wave and current. The predictions show an excellent agreement with the measurement data on medium and fine sand collected by Dohmen-Janssen and Hanes (2002) and Schretlen (2012) in a full-scale wave flume at the Coastal Research Centre in Hannover, Germany. The modified formula can predict the net onshore transport of fine sand in sheet flows. In particular, it can predict the net offshore transport of medium sand in rippled beds through enlarged bed roughness, as well as the net offshore transport of fine-to-coarse sand in sheet flows with the aid of a new criterion to judge the occurrence of net offshore transport.展开更多
基金supported by the National Natural Science Foundation of China (30571156)
文摘The wheatgrass, Thinopyrum intermedium (Host) Barkworth & DR Dewey, shows many beneficial characteristics, such as big spikes and high resistance to many diseases. To transfer the beneficial genes of this species, many wheat- Thinopyrum intermedium alien chromosome lines were developed. Of them, Shannong 0095 (SN0095), a disomic substitution, has long spikes and flag-leaves, and thus may be an important genetic resource for wheat yield improvement. In order to realize its heterosis and combining ability on major yield traits, a 7 ×7 complete diallel design was made according to Griffing's Method-1. The results showed that heterosis for spike length (SPL), flag-leaf area (FLA), number of spikes per plant (NSP), number of spikelets per spike (NSL), kernels per spike (KPS), 1 000-kernel weight (TKW) and grain yield per plant (GYP) existed in all the crosses by SN0095, but heterobeltiosis occurred only for KPS, TKW, and GYP. The relative mid-parent heterosis (RMH) and relative high-parent heterosis (RHH) for GYP, which valued as high as 35.32 and 29.92% respectively, were the highest among all the traits mearsured. Though additive and non-additive gene effects and cytoplasmic effects (or cytoplasmic-nuclear interaction effects) were found in governing all the traits measured above, additive gene action played a predominant role. The results also showed that SN0095 was the best-general combiner for SPL and FLA, and high-general combiner for NSP amongst all the parents. Estimates of specific combining ability (SCA) showed that SN0095 could also make high-SCA combinations for GYP, such as SN0095 × Jimai 19 (JMI9). SN0095 could be a unique and important parent in hybrid wheat breeding programs.
基金supported by the National Basic Research Program of China (973 Program,2006CB101700)
文摘In order to clarify the transmission of the rye chromosome 1R in winter wheat germplasm Aimengniu and its derivatives, 17 derivatives and 7 types of Aimengniu were examined through molecular-marker technology. The results showed that the chromosome arm 1RS of Neuzucht was transmitted to 5 of the 7 types of Aimengniu, i.e., Aimengniu Ⅱ and Aimengniu Ⅳ-Aimengniu VII, no segment of t RS was identified in Aimengniu Ⅰ or Aimengniu Ⅲ. As for the 17 derivatives, the 1RS chromosome arm of Aimengniu was transmitted to 11 derivatives, part segments of 1RS were found in 1 derivative, while no segment was found in the remaining 5 ones. The results provided the evidence that molecular-marker technology was an efficient approach and suitable for analysis of the transmission of chromosome 1R.
基金supported by the National Natural Science Foundation of China(Grant No.51179211)
文摘Wave shapes that induce velocity skewness and acceleration asymmetry are usually responsible for onshore sediment transport, whereas undertow and bottom slope effect normally contribute to offshore sediment transport. By incorporating these counteracting driving forces in a phase-averaged manner, the theoretically-based quasi-steady formula of Wang (2007) is modified to predict the magnitude and direction of net cross-shore total load transport under the coaction of wave and current. The predictions show an excellent agreement with the measurement data on medium and fine sand collected by Dohmen-Janssen and Hanes (2002) and Schretlen (2012) in a full-scale wave flume at the Coastal Research Centre in Hannover, Germany. The modified formula can predict the net onshore transport of fine sand in sheet flows. In particular, it can predict the net offshore transport of medium sand in rippled beds through enlarged bed roughness, as well as the net offshore transport of fine-to-coarse sand in sheet flows with the aid of a new criterion to judge the occurrence of net offshore transport.