为了实现非侵入式负荷监测的功能并提高负荷辨识准确率,文中提出一种基于机器学习的负荷辨识方法。在家用电器电流波形及各次谐波特征的数据中,采用核主成分分析方法(Kernel Principal Components Analysis,KPCA),解决非线性特征提取与...为了实现非侵入式负荷监测的功能并提高负荷辨识准确率,文中提出一种基于机器学习的负荷辨识方法。在家用电器电流波形及各次谐波特征的数据中,采用核主成分分析方法(Kernel Principal Components Analysis,KPCA),解决非线性特征提取与降维的问题,最大限度抽取特征信息。再利用一维卷积核提取时序特征并压缩后输入到XGBoost模型,得到负荷辨识结果。通过在实验室中采集数据进行算法验证,文中提出算法在各类用电器的识别中均具有较高的准确率。展开更多
文摘为了实现非侵入式负荷监测的功能并提高负荷辨识准确率,文中提出一种基于机器学习的负荷辨识方法。在家用电器电流波形及各次谐波特征的数据中,采用核主成分分析方法(Kernel Principal Components Analysis,KPCA),解决非线性特征提取与降维的问题,最大限度抽取特征信息。再利用一维卷积核提取时序特征并压缩后输入到XGBoost模型,得到负荷辨识结果。通过在实验室中采集数据进行算法验证,文中提出算法在各类用电器的识别中均具有较高的准确率。