An interference suppression design scheme based on conjugate weighted butterfly interleaving mapping(CWBIM)is proposed for inter-carrier interference(ICI)and inter-subband interference(IBI)in the received signals of u...An interference suppression design scheme based on conjugate weighted butterfly interleaving mapping(CWBIM)is proposed for inter-carrier interference(ICI)and inter-subband interference(IBI)in the received signals of universal filtered multi-carrier(UFMC)systems.It applies an interleaving mapping operation to subtract the interference coefficients of adjacent terms in ICI and IBI twice,thereby achieving suppression effects similar to the self-cancellation(SC)algorithm while maintaining the original data transmission efficiency.Meanwhile,conjugate and complex weighting operations can effectively suppress the impact of phase rotation errors in high-speed mobile channel environments,thereby further improving the bit error rate(BFR)performance of the system,Moreover,butterfly operation can effectively control the computational complexity of the interleaving mapping process.Theoretical analysis and simulation results show that,compared with the PSC-UFMC algorithm,the CWBIM-UFMC scheme proposed in this paper can effectively suppress ICI and IBI in the received signal without compromising data transmission efficiency and reducing computational complexity,thereby achieving good BER performance of the system.展开更多
In response to the problem of inter-carrier interference(ICI)and inter-subband interference(IBI)in the received signals of universal filtered multi-carrier(UFMC)systems,a novel interfer-ence suppression design scheme ...In response to the problem of inter-carrier interference(ICI)and inter-subband interference(IBI)in the received signals of universal filtered multi-carrier(UFMC)systems,a novel interfer-ence suppression design scheme applying the method of complex weighted matrix inter-leaving map-ping(CWMIM)is proposed on the basis of the existing suppression scheme of conjugate weighted butterfly interleaving mapping(CWBIM).The proposed scheme performs matrix interleaving map-ping on the transmitted signal,which not only improves the carrier interference ratio(CIR)of the received signal by combining the original IBI and ICI terms,but also further inhibits the probability of burst error in the received signal.Meanwhile,the scheme can further decrease the impact of phase rotation errors in the received signal by increasing the number of rotation factors.Theoretical analysis and simulation results demonstrate that compared with CWBIM-UFMC,the proposed CWMIM-UFMC can obtain more effective ICI and IBI suppression and better system bit error rate(BER)performance with only a little bit increase in computational complexity.展开更多
基金Supported by the National Natural Science Foundation of China(No.61601296,61701295)the Science and Technology Innovation ActionPlan Project of Shanghai Science and Technology Commission(No.20511103500)the Talent Program of Shanghai University of Engineer-ing Science(No.2018RC43)。
文摘An interference suppression design scheme based on conjugate weighted butterfly interleaving mapping(CWBIM)is proposed for inter-carrier interference(ICI)and inter-subband interference(IBI)in the received signals of universal filtered multi-carrier(UFMC)systems.It applies an interleaving mapping operation to subtract the interference coefficients of adjacent terms in ICI and IBI twice,thereby achieving suppression effects similar to the self-cancellation(SC)algorithm while maintaining the original data transmission efficiency.Meanwhile,conjugate and complex weighting operations can effectively suppress the impact of phase rotation errors in high-speed mobile channel environments,thereby further improving the bit error rate(BFR)performance of the system,Moreover,butterfly operation can effectively control the computational complexity of the interleaving mapping process.Theoretical analysis and simulation results show that,compared with the PSC-UFMC algorithm,the CWBIM-UFMC scheme proposed in this paper can effectively suppress ICI and IBI in the received signal without compromising data transmission efficiency and reducing computational complexity,thereby achieving good BER performance of the system.
基金Supported by the National Natural Science Foundation of China(No.61601296,61201244)the Science and Technology Innovation Action Plan Project of Shanghai Science and Technology Commission(No.20511103500)the Talent Program of Shanghai University of Engineer-ing Science(No.2018RC43).
文摘In response to the problem of inter-carrier interference(ICI)and inter-subband interference(IBI)in the received signals of universal filtered multi-carrier(UFMC)systems,a novel interfer-ence suppression design scheme applying the method of complex weighted matrix inter-leaving map-ping(CWMIM)is proposed on the basis of the existing suppression scheme of conjugate weighted butterfly interleaving mapping(CWBIM).The proposed scheme performs matrix interleaving map-ping on the transmitted signal,which not only improves the carrier interference ratio(CIR)of the received signal by combining the original IBI and ICI terms,but also further inhibits the probability of burst error in the received signal.Meanwhile,the scheme can further decrease the impact of phase rotation errors in the received signal by increasing the number of rotation factors.Theoretical analysis and simulation results demonstrate that compared with CWBIM-UFMC,the proposed CWMIM-UFMC can obtain more effective ICI and IBI suppression and better system bit error rate(BER)performance with only a little bit increase in computational complexity.