It is well known that Tikhonov regularization in standard form may determine approximate solutions that are too smooth for ill-posed problems,so fractional Tikhonov methods have been introduced to remedy this shortcom...It is well known that Tikhonov regularization in standard form may determine approximate solutions that are too smooth for ill-posed problems,so fractional Tikhonov methods have been introduced to remedy this shortcoming.And Tikhonov regularization for large-scale linear ill-posed problems is commonly implemented by determining apartial Arnoldi decomposition of the given matrix.In this paper,we propose a new method to compute an approximate solution of large scale linear discrete ill-posed problems which applies projection fractional Tikhonov regularization in Krylov subspace via Arnoldi process.The projection fractional Tikhonov regularization combines the fractional matrices and orthogonal projection operators.A suitable value of the regularization parameter is determined by the discrepancy principle.Numerical examples with application to image restoration are carried out to examine that the performance of the method.展开更多
The generalized Tikhonov regularization method is one of the most classical methods for the solution of linear systems of equations that arise from the discretization of linear ill-posed problems.However,the approxima...The generalized Tikhonov regularization method is one of the most classical methods for the solution of linear systems of equations that arise from the discretization of linear ill-posed problems.However,the approximate solution obtained by the Tikhonov regularization method in general form may lack many details of the exact solution.Combining the fractional Tikhonov method with the preconditioned technique,and using the discrepancy principle for determining the regularization parameter,we present a preconditioned projected fractional Tikhonov regularization method for solving discrete ill-posed problems.Numerical experiments illustrate that the proposed algorithm has higher accuracy compared with the existing classical regularization methods.展开更多
Tikhonov regularization is a powerful tool for solving linear discrete ill-posed problems.However,effective methods for dealing with large-scale ill-posed problems are still lacking.The Kaczmarz method is an effective...Tikhonov regularization is a powerful tool for solving linear discrete ill-posed problems.However,effective methods for dealing with large-scale ill-posed problems are still lacking.The Kaczmarz method is an effective iterative projection algorithm for solving large linear equations due to its simplicity.We propose a regularized randomized extended Kaczmarz(RREK)algorithm for solving large discrete ill-posed problems via combining the Tikhonov regularization and the randomized Kaczmarz method.The convergence of the algorithm is proved.Numerical experiments illustrate that the proposed algorithm has higher accuracy and better image restoration quality compared with the existing randomized extended Kaczmarz(REK)method.展开更多
基金supported by the National Natural Science Foundations of China(Nos.11571171and 61473148)
文摘It is well known that Tikhonov regularization in standard form may determine approximate solutions that are too smooth for ill-posed problems,so fractional Tikhonov methods have been introduced to remedy this shortcoming.And Tikhonov regularization for large-scale linear ill-posed problems is commonly implemented by determining apartial Arnoldi decomposition of the given matrix.In this paper,we propose a new method to compute an approximate solution of large scale linear discrete ill-posed problems which applies projection fractional Tikhonov regularization in Krylov subspace via Arnoldi process.The projection fractional Tikhonov regularization combines the fractional matrices and orthogonal projection operators.A suitable value of the regularization parameter is determined by the discrepancy principle.Numerical examples with application to image restoration are carried out to examine that the performance of the method.
基金supported in part by the National Natural Science Foundation of China(No.62073161)the Fundamental Research Funds 2019“Artificial Intelligence+Special Project”of Nanjing University of Aeronautics and Astronautics(No.2019009)
文摘The generalized Tikhonov regularization method is one of the most classical methods for the solution of linear systems of equations that arise from the discretization of linear ill-posed problems.However,the approximate solution obtained by the Tikhonov regularization method in general form may lack many details of the exact solution.Combining the fractional Tikhonov method with the preconditioned technique,and using the discrepancy principle for determining the regularization parameter,we present a preconditioned projected fractional Tikhonov regularization method for solving discrete ill-posed problems.Numerical experiments illustrate that the proposed algorithm has higher accuracy compared with the existing classical regularization methods.
基金supported by the National Natural Science Foundations of China(Nos.11571171,62073161,and 61473148)。
文摘Tikhonov regularization is a powerful tool for solving linear discrete ill-posed problems.However,effective methods for dealing with large-scale ill-posed problems are still lacking.The Kaczmarz method is an effective iterative projection algorithm for solving large linear equations due to its simplicity.We propose a regularized randomized extended Kaczmarz(RREK)algorithm for solving large discrete ill-posed problems via combining the Tikhonov regularization and the randomized Kaczmarz method.The convergence of the algorithm is proved.Numerical experiments illustrate that the proposed algorithm has higher accuracy and better image restoration quality compared with the existing randomized extended Kaczmarz(REK)method.