期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Trihydroxybenzoic Acid Dimer-induced Apoptosis Effects in vitro 被引量:12
1
作者 NIUFeng-lan wangxue-dong +1 位作者 WANGYing-li SONGLian-sheng 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2005年第4期463-467,共5页
The in vitro inhibitory effect of trihydroxybenzoic acid dimer(TAD) extracted from Trapabispinosd roxb on HeLa cell growth was investigated via the MTT[3-(4,5-dimethylthiazol-2-yl)-2,5-diophenyl-tetrazolium bromide] r... The in vitro inhibitory effect of trihydroxybenzoic acid dimer(TAD) extracted from Trapabispinosd roxb on HeLa cell growth was investigated via the MTT[3-(4,5-dimethylthiazol-2-yl)-2,5-diophenyl-tetrazolium bromide] reduction method. The morphological changes of HeLa cells were observed by means of an optical microscope and a transmission electron microscope(TEM); the cell circles and apoptosis were detected by a flow cytometer. It was found that TAD can significantly inhibit the growth of Hela cells and can induce the apoptosis of HeLa cells. It was also found that the inhibition to the growth of Hela cells and the induction to the apoptosis of HeLa cells have a dosage-dependent feature. The inhibiting rates of TAD with mass concentrations of 25.000, 12.500 and 6.250 mg/L to the HeLa cell growth were 52.04%, 34.44% and 23.72% after 30 h, respectively, while those with TAD mass concentrations of 100.000, 50.000, 25.000, 12.500, 6.250 and 3.125 mg/L showed positive correlation with a correlation coefficient value of r=0.9859(P<0.01) and a IC_ 50 value of 10.90 mg/L. Observed by means of TEM, the HeLa cells exposed to 25.000, 12.500 and 6.250 mg/L TAD showed apoptosis to various extents, shrinkage of the cell nuclei, condensation and margination of chromatin, and cavitation of mitochondrion. An apoptosis peak was detected via a flow cytometer. It can be drawn from the results that TAD extracted from Trapabispinosd roxb has an evident inhibitory effect on the proliferation of and an inductive effect on the apoptosis of HeLa cells, but has no obvious arrest action towards the cell circles of HeLa cells. 展开更多
关键词 Trihydroxybenzoic acid dimer(TAD) Trapabispinosd roxb Cell circle arrest Apoptosis HeLa cell
下载PDF
Biodegradation of imazapyr in typical soils in Zhejiang Province,China
2
作者 wangxue-dong ZHOUSu-mei +1 位作者 WANGHui-li FANDe-fang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2005年第4期593-597,共5页
The degradation of imazapyr in non-sterile and sterile soils from four sampling sites in Zhejiang, China was studied. The results showed that the half-lives of imazapyr in non-sterile soils were in the range of 30 to ... The degradation of imazapyr in non-sterile and sterile soils from four sampling sites in Zhejiang, China was studied. The results showed that the half-lives of imazapyr in non-sterile soils were in the range of 30 to 45 d, while 81 to 133 d in sterile(by autoclaving) soils. It means the rate constants of imazapyr under non-sterile conditions were 2 3—4 4 times faster than that under sterile(by autoclaving) conditions, evidently indicating that the indigenous microorganisms in soil play an important role in the degradation of imazapyr. The different sterilization methods could result in different degradation rates of imazapyr. The heat of sterilization of soil largely decreased the degradation. However, the sterile treatment of soil by sodium azide had a different effect from that by autoclaving. Further more, the mechanism was also discussed. Biodegradation in four non-sterile soils accounted for 62% to 78% of imazapyr degradation. In contrast, less than 39% of imazapyr degradation was associated with chemical mechanisms. Therefore, the degradation mechanism was predominantly involved in biology including organisms and microorganisms in soil. Two imazapyr-degrading bacterial strains were isolated in enrichment culture technique and they were identified as Pseudomonas fluorescenes biotypeⅡ(ZJX-5) and Bacillus cereus(ZJX-9), respectively. When added at a concentration of 50 μg/g in mineral salts medium(MSM), ZJX-5 and ZJX-9 could degrade 81% and 87% imazapyr after 48 h of incubation. For the treatment of incorporation of ZJX-5 or ZJX-9 into soil, the degradation rate enhanced 3—4 fold faster than that for control samples, which showed an important value in quick decontamination of imazapyr in soil. 展开更多
关键词 BIODEGRADATION IMAZAPYR sterile soil non-sterile soil imazapyr-degrading bacteria
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部