A new algorithm, called as Double-Epoch Algorithm CDEA) is proposed in GPSrapid positioning using two epoch single frequency phase data in this paper. Firstly, the structurecharacteristic of the normal matrix in GPS r...A new algorithm, called as Double-Epoch Algorithm CDEA) is proposed in GPSrapid positioning using two epoch single frequency phase data in this paper. Firstly, the structurecharacteristic of the normal matrix in GPS rapid positioning is analyzed. Then, in the light of thecharacteristic, based on TIK-HONOV regularization theorem, a new regularizer is designed to mitigatethe ill-condition of the normal matrix. The accurate float ambiguity solutions and their MSEM (MeanSquared Error Matrix) are obtained, u-sing two epoch single frequency phase data. Combined withLAMBDA method, DEA can fix the integer ambiguities correctly and quickly using MSEM instead of thecovariance matrix of the ambiguities. Compared with the traditional methods, DEA can improve theefficiency obviously in rapid positioning. So, the new algorithm has an extensive applicationoutlook in deformation monitoring, pseudokinematic relative positioning and attitude determination,etc.展开更多
A new approach is employed in GPS rapid positioning using several-epoch single frequency phase data.Firstly, the structure characteristic of the normal matrix in GPS rapid positioning is analyzed. Then, in the light o...A new approach is employed in GPS rapid positioning using several-epoch single frequency phase data.Firstly, the structure characteristic of the normal matrix in GPS rapid positioning is analyzed. Then, in the light of the characteristic, based on TIKHONOV regularization theorem,a new regularizer is designed to mitigate the ill-condition of the normal matrix. The accurate float ambiguity solutions and their MSEM (Mean Squared Error Matrix) are obtained using several-epoch single frequency phase data. Combined with LAMBDA method, the new approach was used to fix the integer ambiguities correctly and quickly using MSEM instead of the cofactor matrix of the ambiguities. Finally, a baseline over 3 km is taken as an example. The fixed integer ambiguities by the new approach using five epoch single frequency phase data are the same as those fixed by Bernese software using long time data. The success rate of fixing the integer ambiguities is 100 percent using 197 group data.Compared with the traditional methods, the new approach provides better accuracy and efficiency in GPS rapid positioning. So, the new approach has an extensive application outlook in deformation monitoring, pseudokinematic relative positioning, and attitude determination, etc.展开更多
文摘A new algorithm, called as Double-Epoch Algorithm CDEA) is proposed in GPSrapid positioning using two epoch single frequency phase data in this paper. Firstly, the structurecharacteristic of the normal matrix in GPS rapid positioning is analyzed. Then, in the light of thecharacteristic, based on TIK-HONOV regularization theorem, a new regularizer is designed to mitigatethe ill-condition of the normal matrix. The accurate float ambiguity solutions and their MSEM (MeanSquared Error Matrix) are obtained, u-sing two epoch single frequency phase data. Combined withLAMBDA method, DEA can fix the integer ambiguities correctly and quickly using MSEM instead of thecovariance matrix of the ambiguities. Compared with the traditional methods, DEA can improve theefficiency obviously in rapid positioning. So, the new algorithm has an extensive applicationoutlook in deformation monitoring, pseudokinematic relative positioning and attitude determination,etc.
文摘A new approach is employed in GPS rapid positioning using several-epoch single frequency phase data.Firstly, the structure characteristic of the normal matrix in GPS rapid positioning is analyzed. Then, in the light of the characteristic, based on TIKHONOV regularization theorem,a new regularizer is designed to mitigate the ill-condition of the normal matrix. The accurate float ambiguity solutions and their MSEM (Mean Squared Error Matrix) are obtained using several-epoch single frequency phase data. Combined with LAMBDA method, the new approach was used to fix the integer ambiguities correctly and quickly using MSEM instead of the cofactor matrix of the ambiguities. Finally, a baseline over 3 km is taken as an example. The fixed integer ambiguities by the new approach using five epoch single frequency phase data are the same as those fixed by Bernese software using long time data. The success rate of fixing the integer ambiguities is 100 percent using 197 group data.Compared with the traditional methods, the new approach provides better accuracy and efficiency in GPS rapid positioning. So, the new approach has an extensive application outlook in deformation monitoring, pseudokinematic relative positioning, and attitude determination, etc.