Free-standing covalent organic framework(COFs)nanofilms exhibit a remarkable ability to rapidly intercalate/de-intercalate Li^(+) in lithium-ion batteries,while simultaneously exposing affluent active sites in superca...Free-standing covalent organic framework(COFs)nanofilms exhibit a remarkable ability to rapidly intercalate/de-intercalate Li^(+) in lithium-ion batteries,while simultaneously exposing affluent active sites in supercapacitors.The development of these nanofilms offers a promising solution to address the persistent challenge of imbalanced charge storage kinetics between battery-type anode and capacitor-type cathode in lithium-ion capacitors(LICs).Herein,for the first time,custom-made COFBTMB-TP and COFTAPB-BPY nanofilms are synthesized as the anode and cathode,respectively,for an all-COF nanofilm-structured LIC.The COFBTMB-TP nanofilm with strong electronegative–CF3 groups enables tuning the partial electron cloud density for Li^(+) migration to ensure the rapid anode kinetic process.The thickness-regulated cathodic COFTAPB-BPY nanofilm can fit the anodic COF nanofilm in the capacity.Due to the aligned 1D channel,2D aromatic skeleton and accessible active sites of COF nanofilms,the whole COFTAPB-BPY//COFBTMB-TP LIC demonstrates a high energy density of 318 mWh cm^(−3) at a high-power density of 6 W cm^(−3),excellent rate capability,good cycle stability with the capacity retention rate of 77%after 5000-cycle.The COFTAPB-BPY//COFBTMB-TP LIC represents a new benchmark for currently reported film-type LICs and even film-type supercapacitors.After being comprehensively explored via ex situ XPS,7Li solid-state NMR analyses,and DFT calculation,it is found that the COFBTMB-TP nanofilm facilitates the reversible conversion of semi-ionic to ionic C–F bonds during lithium storage.COFBTMB-TP exhibits a strong interaction with Li^(+) due to the C–F,C=O,and C–N bonds,facilitating Li^(+) desolation and absorption from the electrolyte.This work addresses the challenge of imbalanced charge storage kinetics and capacity between the anode and cathode and also pave the way for future miniaturized and wearable LIC devices.展开更多
The Ninety East Ridge in the Indian Ocean has complex and unique characteristics.The concentrations and distribution characteristics of 10 trace metals(V,Cr,Mn,Fe,Co,Ni,Cu,Cd,Pb,and U)in seawater from the Ninety East ...The Ninety East Ridge in the Indian Ocean has complex and unique characteristics.The concentrations and distribution characteristics of 10 trace metals(V,Cr,Mn,Fe,Co,Ni,Cu,Cd,Pb,and U)in seawater from the Ninety East Ridge in the Indian Ocean were investigated.Results show that the average concentrations of different trace metals in all the collected seawater samples were 1.134μg/L for V,0.158μg/L for Cr,0.489μg/L for Mn,0.427μg/L for Fe,0.011μg/L for Co,0.395μg/L for Ni,0.403μg/L for Cu,0.097μg/L for Cd,0.139μg/L for Pb,and 3.470μg/L for U.Differences in the horizontal and vertical distributions of all measured trace metals were revealed,and the occurrence of high concentrations was nonuniform.In addition,the significant differences in the concentration distribution of different trace metals in seawater on both sides of the Ninety East Ridge present regional segmentation in the area for various trace metals in deep sea water.This study provided basic data for future investigations on the environmental and ecological impact of trace metals in the Indian Ocean and the potential water mass transport mechanism.展开更多
High purity and ultrafine DAAF(u-DAAF)is an emerging insensitive charge in initiators.Although there are many ways to obtain u-DAAF,developing a preparation method with stable operation,accurate control,good quality c...High purity and ultrafine DAAF(u-DAAF)is an emerging insensitive charge in initiators.Although there are many ways to obtain u-DAAF,developing a preparation method with stable operation,accurate control,good quality consistency,equipment miniaturization,and minimum manpower is an inevitable requirement to adapt to the current social technology development trend.Here reported is the microfluidic preparation of u-DAAF with tunable particle size by a passive swirling microreactor.Under the guidance of recrystallization growth kinetics and mixing behavior of fluids in the swirling microreactor,the key parameters(liquid flow rate,explosive concentration and crystallization temperature)were screened and optimized through screening experiments.Under the condition that no surfactant is added and only experimental parameters are controlled,the particle size of recrystallized DAAF can be adjusted from 98 nm to 785 nm,and the corresponding specific surface area is 8.45 m^(2)·g^(-1)to 1.33 m^(2)·g^(-1).In addition,the preparation method has good batch stability,high yield(90.8%-92.6%)and high purity(99.0%-99.4%),indicating a high practical application potential.Electric explosion derived flyer initiation tests demonstrate that the u-DAAF shows an initiation sensitivity much lower than that of the raw DAAF,and comparable to that of the refined DAAF by conventional spraying crystallization method.This study provides an efficient method to fabricate u-DAAF with narrow particle size distribution and high reproducibility as well as a theoretical reference for fabrication of other ultrafine explosives.展开更多
Metal(aluminum and boron)based energetic materials have been wildly applied in various fields including aerospace,explosives and micro-devices due to their high energy density.Unfortunately,the low combustion efficien...Metal(aluminum and boron)based energetic materials have been wildly applied in various fields including aerospace,explosives and micro-devices due to their high energy density.Unfortunately,the low combustion efficiency and reactivity of metal fuels,especially boron(B),severely limit their practical applications.Herein,multi-component 3D microspheres of HMX/B/Al/PTFE(HBA)have been designed and successfully prepared by emulsion and solvent evaporation method to achieve superior energy and combustion reactivity.The reactivity and energy output of HBA are systematically measured by ignitionburning test,constant-volume explosion vessel system and bomb calorimetry.Due to the increased interfacial contact and reaction area,HBA shows higher flame propagation rate,faster pressurization rate and larger combustion heat of 29.95 cm/s,1077 kPa/s,and 6164.43 J/g,which is 1.5 times,3.5 times,and 1.03 times of the physical mixed counterpart(HBA-P).Meanwhile,HBA also shows enhanced energy output and reactivity than 3D microspheres of HMX/B/PTFE(HB)resulting from the high reactivity of Al.The reaction mechanism of 3D microspheres is comprehensively investigated through combustion emission spectral and thermal analysis(TG-DSC-MS).The superior reactivity and energy of HBA originate from the surface etching of fluorine to the inert shell(Al_(2)O_(3) and B_(2)O_(3))and the initiation effect of Al to B.This work offers a promising approach to design and prepare high-performance energetic materials for the practical applications.展开更多
Ameloblastoma is a benign tumor characterized by locally invasive phenotypes,leading to facial bone destruction and a high recurrence rate.However,the mechanisms governing tumor initiation and recurrence are poorly un...Ameloblastoma is a benign tumor characterized by locally invasive phenotypes,leading to facial bone destruction and a high recurrence rate.However,the mechanisms governing tumor initiation and recurrence are poorly understood.Here,we uncovered cellular landscapes and mechanisms that underlie tumor recurrence in ameloblastoma at single-cell resolution.Our results revealed that ameloblastoma exhibits five tumor subpopulations varying with respect to immune response(IR),bone remodeling(BR),tooth development(TD),epithelial development(ED),and cell cycle(CC)signatures.Of note,we found that CC ameloblastoma cells were endowed with stemness and contributed to tumor recurrence,which was dominated by the EZH2-mediated program.Targeting EZH2 effectively eliminated CC ameloblastoma cells and inhibited tumor growth in ameloblastoma patient-derived organoids.These data described the tumor subpopulation and clarified the identity,function,and regulatory mechanism of CC ameloblastoma cells,providing a potential therapeutic target for ameloblastoma.展开更多
Background:The International Agency for Research on Cancer(IARC)released the latest estimates of the global burden of cancer.We present a comparison of cancer profiles between 2020 and 2022,leveraging data from the Gl...Background:The International Agency for Research on Cancer(IARC)released the latest estimates of the global burden of cancer.We present a comparison of cancer profiles between 2020 and 2022,leveraging data from the Global Cancer Statistics(GLOBOCAN).Methods:Cancer incidence and mortality data were sourced from two different years,2020 and 2022,in the GLOBOCAN database.We tracked changes in age-standardized incidence and mortality rates,as well as estimated numbers of new cancer cases and deaths of the 15 most common cancer types globally and in China between 2020 and 2022.Additionally,we conducted comparisons to assess alterations in the cancer burden and variations in mortality-to-incidence ratio(MIR)across different regions and countries for both 2020 and 2022.Results:Lung cancer remained the most common cancer and the leading cause of cancer death worldwide.The new cases of thyroid cancer witnessed a sharp increase in 2022.Conversely,the numbers of new cancer cases and deaths from stomach and esophageal cancer decreased significantly in 2022.The geographic distribution of cancer incidence and mortality across six continents in 2022 largely mirrored that of 2020.Higher Human Development Index(HDI)levels in countries corresponded with elevated rates of cancer incidence and mortality,consistent with the previous year.Among 185 countries or territories,China’s age-standardized incidence rate(ASIR)ranked 64th and its age-standardized mortality rate(ASMR)ranked 68th,aligning with global averages.Lung cancer continued to impose the greatest burden of incidence and mortality.Stomach,breast,and esophageal cancers showed declines in both case counts and ASIR.Noteworthy reductions in both ASMR and absolute mortality numbers were observed in liver,stomach,and esophageal cancers.The global MIR decreased from 0.516 in 2020 to 0.488 in 2022.MIR trends indicated an upward trajectory with decreasing HDI levels in both 2022 and 2020.While Canada,Germany,India,Italy,Japan,and the United Kingdom demonstrated increasing MIRs,China exhibited the most significant decrease,followed by Russia and the United States.Conclusions:The global landscape of cancer incidence and mortality in 2022 reflects ongoing trends observed in 2020.Cancer burdens vary notably across countries with differing socioeconomic statuses.Decreases in stomach,liver,and esophageal cancer cases and deaths signify progress in cancer control efforts.The decrease in the global MIRs highlights potential improvements in cancer management.展开更多
Deep-level defects and random oriented configuration in perovskite crystallization process would cause the nonradiative recombination and further affect the performance of perovskite solar cells(PSCs).Herein,two metal...Deep-level defects and random oriented configuration in perovskite crystallization process would cause the nonradiative recombination and further affect the performance of perovskite solar cells(PSCs).Herein,two metal-organic frameworks(MOFs)with tunable Lewis-base passivation sites have been constructed(Cd-Httb and Cd-Httb-BDC,Httb=5-(4-(1H-1,2,4-triazole-1-yl)benzyl)-1h-tetrazole,BDC=1,4-dicarboxybenzene)to eliminate deep-level defects and simultaneously as nanostructured heterogeneous nucleation seed to assist the growth of large-grained perovskite films.Compared with the control and Cd-Httb,Cd-Httb-BDC designed with mix-ligands strategy exhibited the enhanced inducted effect on the crystallization and nucleation of high-quality perovskite films during annealing process.Consequently,the resultant Cd-Httb-BDC-modified device achieved higher power conversion efficiency(PCE)(22.18%)than the control(20.89%)and Cd-Httb(21.56%).Meanwhile,the unencapsulated Cd-Httb-BDC-modified device still maintained 90%of initial PCE after 1500 h in ambient conditions and exhibited enhanced thermal stability(85℃ in N_(2) atmosphere).This work presented a successful example of mixligands strategy on construction of high-quality MOF-assisted perovskite films for high-efficient and stable PSCs.展开更多
SnSe has attracted extensive attention due to its ultralow thermal conductivity and excellent thermoelectric properties.In this work,pressure-induced thermoelectric properties of Pnma SnSe are investigated via first-p...SnSe has attracted extensive attention due to its ultralow thermal conductivity and excellent thermoelectric properties.In this work,pressure-induced thermoelectric properties of Pnma SnSe are investigated via first-principles calculations.We uncover distinct energy isosurfaces topology transition of conduction band by applying pressure.The newly created conduction band valley caused by pressure has a distinct anisotropic shape compared to the old one.Inducing pressure can greatly enhance the anisotropy of electronic transport properties of the n-type Pnma SnSe.Furthermore,the lattice thermal conductivity also exhibits anisotropic behavior under pressure due to a special collaged phonon mode.The pressure-induced lattice thermal conductivity along the a-axis shows a slower growth trend than that along the b-axis and c-axis.The optimal ZT value of the n-type Pnma SnSe along the a-axis can reach 1.64 at room temperature.These results would be helpful for designing the Pnma SnSe-based materials for the potential thermoelectric and valleytronic applications.展开更多
2,4,6-Tripyridine-s-triazine(TPTZ)spectrophotometric method was applied to determine the concentrations of dissolved monosaccharides(MCHO),polysaccharides(PCHO),and total carbohydrate(TCHO)in seawater samples collecte...2,4,6-Tripyridine-s-triazine(TPTZ)spectrophotometric method was applied to determine the concentrations of dissolved monosaccharides(MCHO),polysaccharides(PCHO),and total carbohydrate(TCHO)in seawater samples collected from sea surface to hadal zone and sediment-seawater interface of the Southern Yap Trench in the Western Pacific Ocean.Results show that the concentrations of MCHO,PCHO,and TCHO ranged from 6.3 to 22.3μmol C/L,1.1 to 25.4μmol C/L,and 12.1 to 44.9μmol C/L,respectively,from the euphotic layer to the hadal zone of the trench.At different sampling stations,the concentrations of MCHO,PCHO,and TCHO in the seawater showed complex vertical variation characteristics,but the overall variation trends were decreasing with water depth.In the Southern Yap Trench,the maximum concentration of MCHO in the seawater appeared in the euphotic layer,and the minimum in the hadal zone.The maximum concentration of PCHO appeared in the euphotic layer,and the minimum in the bathypelagic layer.The water layer where the maxima and minima of the average concentration of TCHO appeared was consistent with that of PCHO.PCHO was the major component of TCHO in the seawater of the Southern Yap Trench.In the seawater from the sediment-seawater interface,the concentrations of MCHO,PCHO,and TCHO ranged from 8.4 to 10.6μmol C/L,3.8 to 5.8μmol C/L,and 12.2 to 15.2μmol C/L,respectively,and MCHO was the major component of TCHO.The key factors affecting the concentration and existing forms of dissolved sugars in the seawater of the Southern Yap Trench included photosynthesis,respiration,polysaccharide hydrolysis,adsorption and desorption of particulate matter,trench“funnel effect”,deep ocean currents,sediment resuspension,and etc.This study provided fundamental data about labile organic matter in abyss and hadal zone of marine environment,which is significant for further understanding of deep-sea organic carbon cycle.展开更多
The composition and concentration of dissolved free amino acid(DFAA)of seawater samples collected in May 2016 from the surface to the hadal zone of the northern region of the Yap Trench were analyzed by pre-column der...The composition and concentration of dissolved free amino acid(DFAA)of seawater samples collected in May 2016 from the surface to the hadal zone of the northern region of the Yap Trench were analyzed by pre-column derivatization of o-phthalaldehyde.Results show that the average concentration of DFAA in the study area was 0.47±0.36μmol/L.In different sampling stations,the concentrations of DFAA with water depth showed complex variation patterns.At the sediment-seawater interface,the concentrations of DFAA in the western side of the trench were obviously higher than that in its eastern side.In the study area,there were no significant correlations between the concentrations of DFAA and the environmental parameters such as concentrations of chlorophyll a(Chl a),dissolved oxygen(DO),pH,and dissolved inorganic nitrogen(DIN),indicating that the concentrations of DFAA in seawater of the trench are affected by many factors,such as photosynthesis,respiration,temperature,pressure,illumination,and circulation.The dominant DFAA are similar in different water layers of sampling stations,including aspartic acid(Asp),glutamic acid(Glu),glycine(Gly),and serine(Ser).The composition of different amino acids,and the relative abundance of acidic,basic,and neutral amino acids might be related to the sources and consumption of various amino acids.Nine pairs of amino acids in the DFAA showed significantly positive relationship by correlation matrix analysis,suggesting that they might share similar biogeochemical processes.The degradation index(DI)of the DFAA in seawater of the Yap Trench could reflect the degradation,source,and freshness of DFAA in the trench to some extents.This is a preliminary study of amino acids from sea surface to hadal zone in the ocean,more works shall be done in different trenches to reveal their biogeochemical characte ristics in extreme marine environme nts.展开更多
The canonical transient receptor potential channel(TRPC)proteins form Ca^(2+)-permeable cation channels that are involved in various heart diseases.However,the roles of specific TRPC proteins in myocardial ischemia/re...The canonical transient receptor potential channel(TRPC)proteins form Ca^(2+)-permeable cation channels that are involved in various heart diseases.However,the roles of specific TRPC proteins in myocardial ischemia/reperfusion(I/R)injury remain poorly understood.We observed that TRPC1 and TRPC6 were highly expressed in the area at risk(AAR)in a coronary artery ligation induced I/R model.Trpc1/mice exhibited improved cardiac function,lower serum Troponin T and serum creatine kinase level,smaller infarct volume,less fibrotic scars,and fewer apoptotic cells after myocardial-I/R than wild-type or Trpc6/mice.Cardiomyocyte-specific knockdown of Trpc1 using adeno-associated virus 9 mitigated myocardial I/R injury.Furthermore,Trpc1 deficiency protected adult mouse ventricular myocytes(AMVMs)and HL-1 cells from death during hypoxia/reoxygenation(H/R)injury.RNA-sequencing-based transcriptome analysis revealed differential expression of genes related to reactive oxygen species(ROS)generation in Trpc1/cardiomyocytes.Among these genes,oxoglutarate dehydrogenase-like(Ogdhl)was markedly downregulated.Moreover,Trpc1 deficiency impaired the calcineurin(CaN)/nuclear factorkappa B(NF-kB)signaling pathway in AMVMs.Suppression of this pathway inhibited Ogdhl upregulation and ROS generation in HL-1 cells under H/R conditions.Chromatin immunoprecipitation assays confirmed NF-kB binding to the Ogdhl promoter.The cardioprotective effect of Trpc1 deficiency was canceled out by overexpression of NF-kB and Ogdhl in cardiomyocytes.In conclusion,our findings reveal that TRPC1 is upregulated in the AAR following myocardial I/R,leading to increased Ca^(2+) influx into associated cardiomyocytes.Subsequently,this upregulates Ogdhl expression through the CaN/NF-kB signaling pathway,ultimately exacerbating ROS production and aggravating myocardial I/R injury.展开更多
Rheumatoid arthritis imposes a huge disease burden.Existing practice guidelines do not meet the needs of integrated traditional Chinese medicine and Western medicine in the treatment of rheumatoid arthritis.We establi...Rheumatoid arthritis imposes a huge disease burden.Existing practice guidelines do not meet the needs of integrated traditional Chinese medicine and Western medicine in the treatment of rheumatoid arthritis.We established a guideline working group consists of a steering committee,a secretary group,an evidence evaluation group,a consensus group and a review group and developed a guideline following the guidance of the World Health Organization Handbook and the Chinese Medical Association.The guideline includes 35 recommendations which reached consensus by the two rounds Delphi surveys.These recommendations were formulated to address the following themes of most concern to clinician:diagnostic imaging,disease staging,traditional Chinese medicine syndromes,effectiveness and toxicity of integrated traditional Chinese medicine and Western medicine.展开更多
Vasoactive intestinal peptide-producing tumors (VIP-oma) usually originate in the pancreas and are chara-cterized by diarrhea, hypokalemia, and achlorhydria (WDHA syndrome). In adults, nonpancreatic VIPoma is very...Vasoactive intestinal peptide-producing tumors (VIP-oma) usually originate in the pancreas and are chara-cterized by diarrhea, hypokalemia, and achlorhydria (WDHA syndrome). In adults, nonpancreatic VIPoma is very rare. Herein, we report an unusual case of VIP-producing pheochromocytoma marked by persistent shock, fushing, and watery diarrhea and high sensitivity to octreotide. A 53-year-old woman was hospitalized for sudden-onset hypertension with convulsions, which then rapidly evolved to persistent shock, fushing, and watery diarrhea. Abdominal computed tomography indicated a left adrenal mass, accompanied by bleeding;and marked elevations of both plasma catecholamine and VIP concentrations were documented via laboratory testing. Surprisingly, all clinical symptoms responded swiftly to octreotide treatment. Once surgically treated, hormonal levels normalized in this patient, and the clinical symptoms dissipated. Postoperative pathological and immunohistopathological studies confrmed a VIP-secreting pheochromocytoma with strong, diffuse positivity for somatostatin receptor type 2. During a 6-mo follow-up period, she seemed in good health andwas symptom-free.展开更多
In this paper, a manifold subspace learning algorithm based on locality preserving discriminant projection (LPDP) is used for speaker verification. LPDP can overcome the deficiency of the total variability factor anal...In this paper, a manifold subspace learning algorithm based on locality preserving discriminant projection (LPDP) is used for speaker verification. LPDP can overcome the deficiency of the total variability factor analysis and locality preserving projection (LPP). LPDP can effectively use the speaker label information of speech data. Through optimization, LPDP can maintain the inherent manifold local structure of the speech data samples of the same speaker by reducing the distance between them. At the same time, LPDP can enhance the discriminability of the embedding space by expanding the distance between the speech data samples of different speakers. The proposed method is compared with LPP and total variability factor analysis on the NIST SRE 2010 telephone-telephone core condition. The experimental results indicate that the proposed LPDP can overcome the deficiency of LPP and total variability factor analysis and can further improve the system performance.展开更多
Due to differences in the distribution of scores for different trials, the performance of a speaker verification system will be seriously diminished if raw scores are directly used for detection with a unified thresho...Due to differences in the distribution of scores for different trials, the performance of a speaker verification system will be seriously diminished if raw scores are directly used for detection with a unified threshold value. As such, the scores must be normalized. To tackle the shortcomings of score normalization methods, we propose a speaker verification system based on log-likelihood normalization (LLN). Without a priori knowledge, LLN increases the separation between scores of target and non-target speaker models, so as to improve score aliasing of “same-speaker” and “different-speaker” trials corresponding to the same test speech, enabling better discrimination and decision capability. The experiment shows that LLN is an effective method of scoring normalization.展开更多
基金We are grateful to National Natural Science Foundation of China(Grant No.22375056,52272163)the Key R&D Program of Hebei(Grant No.216Z1201G)+1 种基金Natural Science Foundation of Hebei Province(Grant No.E2022208066,B2021208014)Key R&D Program of Hebei Technological Innovation Center of Chiral Medicine(Grant No.ZXJJ20220105).
文摘Free-standing covalent organic framework(COFs)nanofilms exhibit a remarkable ability to rapidly intercalate/de-intercalate Li^(+) in lithium-ion batteries,while simultaneously exposing affluent active sites in supercapacitors.The development of these nanofilms offers a promising solution to address the persistent challenge of imbalanced charge storage kinetics between battery-type anode and capacitor-type cathode in lithium-ion capacitors(LICs).Herein,for the first time,custom-made COFBTMB-TP and COFTAPB-BPY nanofilms are synthesized as the anode and cathode,respectively,for an all-COF nanofilm-structured LIC.The COFBTMB-TP nanofilm with strong electronegative–CF3 groups enables tuning the partial electron cloud density for Li^(+) migration to ensure the rapid anode kinetic process.The thickness-regulated cathodic COFTAPB-BPY nanofilm can fit the anodic COF nanofilm in the capacity.Due to the aligned 1D channel,2D aromatic skeleton and accessible active sites of COF nanofilms,the whole COFTAPB-BPY//COFBTMB-TP LIC demonstrates a high energy density of 318 mWh cm^(−3) at a high-power density of 6 W cm^(−3),excellent rate capability,good cycle stability with the capacity retention rate of 77%after 5000-cycle.The COFTAPB-BPY//COFBTMB-TP LIC represents a new benchmark for currently reported film-type LICs and even film-type supercapacitors.After being comprehensively explored via ex situ XPS,7Li solid-state NMR analyses,and DFT calculation,it is found that the COFBTMB-TP nanofilm facilitates the reversible conversion of semi-ionic to ionic C–F bonds during lithium storage.COFBTMB-TP exhibits a strong interaction with Li^(+) due to the C–F,C=O,and C–N bonds,facilitating Li^(+) desolation and absorption from the electrolyte.This work addresses the challenge of imbalanced charge storage kinetics and capacity between the anode and cathode and also pave the way for future miniaturized and wearable LIC devices.
基金Supported by the Natural Science Foundation of Shandong Province(No.ZR2021MD079)the APEC Cooperation Fund(No.WJ1323001)the Asian Cooperation Fund(No.WJ1223001)。
文摘The Ninety East Ridge in the Indian Ocean has complex and unique characteristics.The concentrations and distribution characteristics of 10 trace metals(V,Cr,Mn,Fe,Co,Ni,Cu,Cd,Pb,and U)in seawater from the Ninety East Ridge in the Indian Ocean were investigated.Results show that the average concentrations of different trace metals in all the collected seawater samples were 1.134μg/L for V,0.158μg/L for Cr,0.489μg/L for Mn,0.427μg/L for Fe,0.011μg/L for Co,0.395μg/L for Ni,0.403μg/L for Cu,0.097μg/L for Cd,0.139μg/L for Pb,and 3.470μg/L for U.Differences in the horizontal and vertical distributions of all measured trace metals were revealed,and the occurrence of high concentrations was nonuniform.In addition,the significant differences in the concentration distribution of different trace metals in seawater on both sides of the Ninety East Ridge present regional segmentation in the area for various trace metals in deep sea water.This study provided basic data for future investigations on the environmental and ecological impact of trace metals in the Indian Ocean and the potential water mass transport mechanism.
基金the National Natural Science Foundation of China (Grant No.22105184)Research Fund of SWUST for PhD (Grant No.22zx7175)+1 种基金Sichuan Science and Technology Program (Grant No.2019ZDZX0013)Institute of Chemical Materials Program (Grant No.SXK-2022-03)for financial support。
文摘High purity and ultrafine DAAF(u-DAAF)is an emerging insensitive charge in initiators.Although there are many ways to obtain u-DAAF,developing a preparation method with stable operation,accurate control,good quality consistency,equipment miniaturization,and minimum manpower is an inevitable requirement to adapt to the current social technology development trend.Here reported is the microfluidic preparation of u-DAAF with tunable particle size by a passive swirling microreactor.Under the guidance of recrystallization growth kinetics and mixing behavior of fluids in the swirling microreactor,the key parameters(liquid flow rate,explosive concentration and crystallization temperature)were screened and optimized through screening experiments.Under the condition that no surfactant is added and only experimental parameters are controlled,the particle size of recrystallized DAAF can be adjusted from 98 nm to 785 nm,and the corresponding specific surface area is 8.45 m^(2)·g^(-1)to 1.33 m^(2)·g^(-1).In addition,the preparation method has good batch stability,high yield(90.8%-92.6%)and high purity(99.0%-99.4%),indicating a high practical application potential.Electric explosion derived flyer initiation tests demonstrate that the u-DAAF shows an initiation sensitivity much lower than that of the raw DAAF,and comparable to that of the refined DAAF by conventional spraying crystallization method.This study provides an efficient method to fabricate u-DAAF with narrow particle size distribution and high reproducibility as well as a theoretical reference for fabrication of other ultrafine explosives.
基金the National Natural Science Foundation of China(Grant Nos.T2222027,12202416 and 12272359).
文摘Metal(aluminum and boron)based energetic materials have been wildly applied in various fields including aerospace,explosives and micro-devices due to their high energy density.Unfortunately,the low combustion efficiency and reactivity of metal fuels,especially boron(B),severely limit their practical applications.Herein,multi-component 3D microspheres of HMX/B/Al/PTFE(HBA)have been designed and successfully prepared by emulsion and solvent evaporation method to achieve superior energy and combustion reactivity.The reactivity and energy output of HBA are systematically measured by ignitionburning test,constant-volume explosion vessel system and bomb calorimetry.Due to the increased interfacial contact and reaction area,HBA shows higher flame propagation rate,faster pressurization rate and larger combustion heat of 29.95 cm/s,1077 kPa/s,and 6164.43 J/g,which is 1.5 times,3.5 times,and 1.03 times of the physical mixed counterpart(HBA-P).Meanwhile,HBA also shows enhanced energy output and reactivity than 3D microspheres of HMX/B/PTFE(HB)resulting from the high reactivity of Al.The reaction mechanism of 3D microspheres is comprehensively investigated through combustion emission spectral and thermal analysis(TG-DSC-MS).The superior reactivity and energy of HBA originate from the surface etching of fluorine to the inert shell(Al_(2)O_(3) and B_(2)O_(3))and the initiation effect of Al to B.This work offers a promising approach to design and prepare high-performance energetic materials for the practical applications.
基金supported by the National Natural Science Foundation of China(82141112)Guangdong Financial Fund for High-Caliber Hospital Construction(174-2018-XMZC-0001-03-0125/D-14)C.W.and the Clinical Research Program of 9th People’s Hospital,Shanghai Jiao Tong University School of Medicine(JYLJ202112).
文摘Ameloblastoma is a benign tumor characterized by locally invasive phenotypes,leading to facial bone destruction and a high recurrence rate.However,the mechanisms governing tumor initiation and recurrence are poorly understood.Here,we uncovered cellular landscapes and mechanisms that underlie tumor recurrence in ameloblastoma at single-cell resolution.Our results revealed that ameloblastoma exhibits five tumor subpopulations varying with respect to immune response(IR),bone remodeling(BR),tooth development(TD),epithelial development(ED),and cell cycle(CC)signatures.Of note,we found that CC ameloblastoma cells were endowed with stemness and contributed to tumor recurrence,which was dominated by the EZH2-mediated program.Targeting EZH2 effectively eliminated CC ameloblastoma cells and inhibited tumor growth in ameloblastoma patient-derived organoids.These data described the tumor subpopulation and clarified the identity,function,and regulatory mechanism of CC ameloblastoma cells,providing a potential therapeutic target for ameloblastoma.
文摘Background:The International Agency for Research on Cancer(IARC)released the latest estimates of the global burden of cancer.We present a comparison of cancer profiles between 2020 and 2022,leveraging data from the Global Cancer Statistics(GLOBOCAN).Methods:Cancer incidence and mortality data were sourced from two different years,2020 and 2022,in the GLOBOCAN database.We tracked changes in age-standardized incidence and mortality rates,as well as estimated numbers of new cancer cases and deaths of the 15 most common cancer types globally and in China between 2020 and 2022.Additionally,we conducted comparisons to assess alterations in the cancer burden and variations in mortality-to-incidence ratio(MIR)across different regions and countries for both 2020 and 2022.Results:Lung cancer remained the most common cancer and the leading cause of cancer death worldwide.The new cases of thyroid cancer witnessed a sharp increase in 2022.Conversely,the numbers of new cancer cases and deaths from stomach and esophageal cancer decreased significantly in 2022.The geographic distribution of cancer incidence and mortality across six continents in 2022 largely mirrored that of 2020.Higher Human Development Index(HDI)levels in countries corresponded with elevated rates of cancer incidence and mortality,consistent with the previous year.Among 185 countries or territories,China’s age-standardized incidence rate(ASIR)ranked 64th and its age-standardized mortality rate(ASMR)ranked 68th,aligning with global averages.Lung cancer continued to impose the greatest burden of incidence and mortality.Stomach,breast,and esophageal cancers showed declines in both case counts and ASIR.Noteworthy reductions in both ASMR and absolute mortality numbers were observed in liver,stomach,and esophageal cancers.The global MIR decreased from 0.516 in 2020 to 0.488 in 2022.MIR trends indicated an upward trajectory with decreasing HDI levels in both 2022 and 2020.While Canada,Germany,India,Italy,Japan,and the United Kingdom demonstrated increasing MIRs,China exhibited the most significant decrease,followed by Russia and the United States.Conclusions:The global landscape of cancer incidence and mortality in 2022 reflects ongoing trends observed in 2020.Cancer burdens vary notably across countries with differing socioeconomic statuses.Decreases in stomach,liver,and esophageal cancer cases and deaths signify progress in cancer control efforts.The decrease in the global MIRs highlights potential improvements in cancer management.
基金supported by the National Natural Science Foundation of China(22072034,22001050,and 21873025)the China Postdoctoral Science Foundation(2020T130147,2020M681084,and 2022M710949)+1 种基金the Postdoctoral Foundation of Heilongjiang Province(LBH-Z19059)the Natural Science Foundation of Heilongjiang Youth Fund(YQ2021B002).
文摘Deep-level defects and random oriented configuration in perovskite crystallization process would cause the nonradiative recombination and further affect the performance of perovskite solar cells(PSCs).Herein,two metal-organic frameworks(MOFs)with tunable Lewis-base passivation sites have been constructed(Cd-Httb and Cd-Httb-BDC,Httb=5-(4-(1H-1,2,4-triazole-1-yl)benzyl)-1h-tetrazole,BDC=1,4-dicarboxybenzene)to eliminate deep-level defects and simultaneously as nanostructured heterogeneous nucleation seed to assist the growth of large-grained perovskite films.Compared with the control and Cd-Httb,Cd-Httb-BDC designed with mix-ligands strategy exhibited the enhanced inducted effect on the crystallization and nucleation of high-quality perovskite films during annealing process.Consequently,the resultant Cd-Httb-BDC-modified device achieved higher power conversion efficiency(PCE)(22.18%)than the control(20.89%)and Cd-Httb(21.56%).Meanwhile,the unencapsulated Cd-Httb-BDC-modified device still maintained 90%of initial PCE after 1500 h in ambient conditions and exhibited enhanced thermal stability(85℃ in N_(2) atmosphere).This work presented a successful example of mixligands strategy on construction of high-quality MOF-assisted perovskite films for high-efficient and stable PSCs.
基金support of the project from the National Natural Science Foundation of China(Grant No.91963207,12122408,12074292)National Key R&D Program of China(Grant No.2021YFA0718700)Suzhou Key Industrial Technology Innovation project(Grant No.SYG201921).
文摘SnSe has attracted extensive attention due to its ultralow thermal conductivity and excellent thermoelectric properties.In this work,pressure-induced thermoelectric properties of Pnma SnSe are investigated via first-principles calculations.We uncover distinct energy isosurfaces topology transition of conduction band by applying pressure.The newly created conduction band valley caused by pressure has a distinct anisotropic shape compared to the old one.Inducing pressure can greatly enhance the anisotropy of electronic transport properties of the n-type Pnma SnSe.Furthermore,the lattice thermal conductivity also exhibits anisotropic behavior under pressure due to a special collaged phonon mode.The pressure-induced lattice thermal conductivity along the a-axis shows a slower growth trend than that along the b-axis and c-axis.The optimal ZT value of the n-type Pnma SnSe along the a-axis can reach 1.64 at room temperature.These results would be helpful for designing the Pnma SnSe-based materials for the potential thermoelectric and valleytronic applications.
基金Supported by the National Key Research and Development Program of China(No.2022YFC2803803)the National Natural Science Foundation of China(No.42076040)the National Basic Research Program of China(973 Program)(No.2015CB755904)。
文摘2,4,6-Tripyridine-s-triazine(TPTZ)spectrophotometric method was applied to determine the concentrations of dissolved monosaccharides(MCHO),polysaccharides(PCHO),and total carbohydrate(TCHO)in seawater samples collected from sea surface to hadal zone and sediment-seawater interface of the Southern Yap Trench in the Western Pacific Ocean.Results show that the concentrations of MCHO,PCHO,and TCHO ranged from 6.3 to 22.3μmol C/L,1.1 to 25.4μmol C/L,and 12.1 to 44.9μmol C/L,respectively,from the euphotic layer to the hadal zone of the trench.At different sampling stations,the concentrations of MCHO,PCHO,and TCHO in the seawater showed complex vertical variation characteristics,but the overall variation trends were decreasing with water depth.In the Southern Yap Trench,the maximum concentration of MCHO in the seawater appeared in the euphotic layer,and the minimum in the hadal zone.The maximum concentration of PCHO appeared in the euphotic layer,and the minimum in the bathypelagic layer.The water layer where the maxima and minima of the average concentration of TCHO appeared was consistent with that of PCHO.PCHO was the major component of TCHO in the seawater of the Southern Yap Trench.In the seawater from the sediment-seawater interface,the concentrations of MCHO,PCHO,and TCHO ranged from 8.4 to 10.6μmol C/L,3.8 to 5.8μmol C/L,and 12.2 to 15.2μmol C/L,respectively,and MCHO was the major component of TCHO.The key factors affecting the concentration and existing forms of dissolved sugars in the seawater of the Southern Yap Trench included photosynthesis,respiration,polysaccharide hydrolysis,adsorption and desorption of particulate matter,trench“funnel effect”,deep ocean currents,sediment resuspension,and etc.This study provided fundamental data about labile organic matter in abyss and hadal zone of marine environment,which is significant for further understanding of deep-sea organic carbon cycle.
基金Supported by the Natural National Science Foundation of China(Nos.42076040,41676067)the National Basic Research Program of China(973 Program)(No.2015CB755904)the 111 Project(No.B13030)。
文摘The composition and concentration of dissolved free amino acid(DFAA)of seawater samples collected in May 2016 from the surface to the hadal zone of the northern region of the Yap Trench were analyzed by pre-column derivatization of o-phthalaldehyde.Results show that the average concentration of DFAA in the study area was 0.47±0.36μmol/L.In different sampling stations,the concentrations of DFAA with water depth showed complex variation patterns.At the sediment-seawater interface,the concentrations of DFAA in the western side of the trench were obviously higher than that in its eastern side.In the study area,there were no significant correlations between the concentrations of DFAA and the environmental parameters such as concentrations of chlorophyll a(Chl a),dissolved oxygen(DO),pH,and dissolved inorganic nitrogen(DIN),indicating that the concentrations of DFAA in seawater of the trench are affected by many factors,such as photosynthesis,respiration,temperature,pressure,illumination,and circulation.The dominant DFAA are similar in different water layers of sampling stations,including aspartic acid(Asp),glutamic acid(Glu),glycine(Gly),and serine(Ser).The composition of different amino acids,and the relative abundance of acidic,basic,and neutral amino acids might be related to the sources and consumption of various amino acids.Nine pairs of amino acids in the DFAA showed significantly positive relationship by correlation matrix analysis,suggesting that they might share similar biogeochemical processes.The degradation index(DI)of the DFAA in seawater of the Yap Trench could reflect the degradation,source,and freshness of DFAA in the trench to some extents.This is a preliminary study of amino acids from sea surface to hadal zone in the ocean,more works shall be done in different trenches to reveal their biogeochemical characte ristics in extreme marine environme nts.
基金supported by the National Natural Science Foundation of China(Grant Nos.:81970245,82270357,and 81770432)the Scientific Research Project of Shaanxi Administration of Traditional Chinese Medicine,China(Grant Nos.:2021-04-ZZ-001,2021-QYPT-003,and 2022-SLRH-YQ-004)+1 种基金the Project of Science and Technology Department of Shaanxi Province in China(Project No.:2022YWZX-PG-01)the Natural Science Basic Research Program of Shaanxi Province in China(Grant No.:2023-JC-JQ-61).
文摘The canonical transient receptor potential channel(TRPC)proteins form Ca^(2+)-permeable cation channels that are involved in various heart diseases.However,the roles of specific TRPC proteins in myocardial ischemia/reperfusion(I/R)injury remain poorly understood.We observed that TRPC1 and TRPC6 were highly expressed in the area at risk(AAR)in a coronary artery ligation induced I/R model.Trpc1/mice exhibited improved cardiac function,lower serum Troponin T and serum creatine kinase level,smaller infarct volume,less fibrotic scars,and fewer apoptotic cells after myocardial-I/R than wild-type or Trpc6/mice.Cardiomyocyte-specific knockdown of Trpc1 using adeno-associated virus 9 mitigated myocardial I/R injury.Furthermore,Trpc1 deficiency protected adult mouse ventricular myocytes(AMVMs)and HL-1 cells from death during hypoxia/reoxygenation(H/R)injury.RNA-sequencing-based transcriptome analysis revealed differential expression of genes related to reactive oxygen species(ROS)generation in Trpc1/cardiomyocytes.Among these genes,oxoglutarate dehydrogenase-like(Ogdhl)was markedly downregulated.Moreover,Trpc1 deficiency impaired the calcineurin(CaN)/nuclear factorkappa B(NF-kB)signaling pathway in AMVMs.Suppression of this pathway inhibited Ogdhl upregulation and ROS generation in HL-1 cells under H/R conditions.Chromatin immunoprecipitation assays confirmed NF-kB binding to the Ogdhl promoter.The cardioprotective effect of Trpc1 deficiency was canceled out by overexpression of NF-kB and Ogdhl in cardiomyocytes.In conclusion,our findings reveal that TRPC1 is upregulated in the AAR following myocardial I/R,leading to increased Ca^(2+) influx into associated cardiomyocytes.Subsequently,this upregulates Ogdhl expression through the CaN/NF-kB signaling pathway,ultimately exacerbating ROS production and aggravating myocardial I/R injury.
基金National Key Research and Development Program of China(No.2018YFC1705503).
文摘Rheumatoid arthritis imposes a huge disease burden.Existing practice guidelines do not meet the needs of integrated traditional Chinese medicine and Western medicine in the treatment of rheumatoid arthritis.We established a guideline working group consists of a steering committee,a secretary group,an evidence evaluation group,a consensus group and a review group and developed a guideline following the guidance of the World Health Organization Handbook and the Chinese Medical Association.The guideline includes 35 recommendations which reached consensus by the two rounds Delphi surveys.These recommendations were formulated to address the following themes of most concern to clinician:diagnostic imaging,disease staging,traditional Chinese medicine syndromes,effectiveness and toxicity of integrated traditional Chinese medicine and Western medicine.
基金Supported by National Clinical Specialty Construction Project,No.2012649
文摘Vasoactive intestinal peptide-producing tumors (VIP-oma) usually originate in the pancreas and are chara-cterized by diarrhea, hypokalemia, and achlorhydria (WDHA syndrome). In adults, nonpancreatic VIPoma is very rare. Herein, we report an unusual case of VIP-producing pheochromocytoma marked by persistent shock, fushing, and watery diarrhea and high sensitivity to octreotide. A 53-year-old woman was hospitalized for sudden-onset hypertension with convulsions, which then rapidly evolved to persistent shock, fushing, and watery diarrhea. Abdominal computed tomography indicated a left adrenal mass, accompanied by bleeding;and marked elevations of both plasma catecholamine and VIP concentrations were documented via laboratory testing. Surprisingly, all clinical symptoms responded swiftly to octreotide treatment. Once surgically treated, hormonal levels normalized in this patient, and the clinical symptoms dissipated. Postoperative pathological and immunohistopathological studies confrmed a VIP-secreting pheochromocytoma with strong, diffuse positivity for somatostatin receptor type 2. During a 6-mo follow-up period, she seemed in good health andwas symptom-free.
文摘In this paper, a manifold subspace learning algorithm based on locality preserving discriminant projection (LPDP) is used for speaker verification. LPDP can overcome the deficiency of the total variability factor analysis and locality preserving projection (LPP). LPDP can effectively use the speaker label information of speech data. Through optimization, LPDP can maintain the inherent manifold local structure of the speech data samples of the same speaker by reducing the distance between them. At the same time, LPDP can enhance the discriminability of the embedding space by expanding the distance between the speech data samples of different speakers. The proposed method is compared with LPP and total variability factor analysis on the NIST SRE 2010 telephone-telephone core condition. The experimental results indicate that the proposed LPDP can overcome the deficiency of LPP and total variability factor analysis and can further improve the system performance.
文摘Due to differences in the distribution of scores for different trials, the performance of a speaker verification system will be seriously diminished if raw scores are directly used for detection with a unified threshold value. As such, the scores must be normalized. To tackle the shortcomings of score normalization methods, we propose a speaker verification system based on log-likelihood normalization (LLN). Without a priori knowledge, LLN increases the separation between scores of target and non-target speaker models, so as to improve score aliasing of “same-speaker” and “different-speaker” trials corresponding to the same test speech, enabling better discrimination and decision capability. The experiment shows that LLN is an effective method of scoring normalization.