As the potential applications of carbon nanotubes in the field of electroluminescence, elements yttrium and europium were introduced to modify the emission properties of double-walled carbon nanotubes (DWNTs) to obtai...As the potential applications of carbon nanotubes in the field of electroluminescence, elements yttrium and europium were introduced to modify the emission properties of double-walled carbon nanotubes (DWNTs) to obtain higher efficacy and other properties. The light emission spectrum of the Y-Eu-doped DWNT filament is suppressed in the near-infrared range, while enhanced in the mid-infrared range. The doped DWNT filament can reach higher efficacy than that of the pure DWNT filament at the same input power and can work stably as long as 5000 h at 12 V. These filaments could be useful for the light sources with special functions, such as infrared light sources operated at low input power.展开更多
Carbon nanotube (CNT) bulbs made of decimeter-scale double-walled carbon nanotube (DWCNT) strands and films were fabricated and their luminescence properties, including the lighting efficiency, voltage-current relatio...Carbon nanotube (CNT) bulbs made of decimeter-scale double-walled carbon nanotube (DWCNT) strands and films were fabricated and their luminescence properties, including the lighting efficiency, voltage-current relation and thermal stability were investigated. The results show that the DWCNT bulb has a comparable spectrum of visible light with tungsten bulb and its average efficiency is 40% higher than that of a tungsten filament at the same temperature (1400―2300 K). The nanotube filaments show both resistance and thermal stability over a large temperature region. No obvious damage was found for a nanotube bulb illuminating at 2300 K for more than 24 hours in vacuum.展开更多
基金Supported by the National Natural Science Foundation of China (Grant No. 50672047)
文摘As the potential applications of carbon nanotubes in the field of electroluminescence, elements yttrium and europium were introduced to modify the emission properties of double-walled carbon nanotubes (DWNTs) to obtain higher efficacy and other properties. The light emission spectrum of the Y-Eu-doped DWNT filament is suppressed in the near-infrared range, while enhanced in the mid-infrared range. The doped DWNT filament can reach higher efficacy than that of the pure DWNT filament at the same input power and can work stably as long as 5000 h at 12 V. These filaments could be useful for the light sources with special functions, such as infrared light sources operated at low input power.
基金Supported by the National Center for Nanoscience and Technology, China
文摘Carbon nanotube (CNT) bulbs made of decimeter-scale double-walled carbon nanotube (DWCNT) strands and films were fabricated and their luminescence properties, including the lighting efficiency, voltage-current relation and thermal stability were investigated. The results show that the DWCNT bulb has a comparable spectrum of visible light with tungsten bulb and its average efficiency is 40% higher than that of a tungsten filament at the same temperature (1400―2300 K). The nanotube filaments show both resistance and thermal stability over a large temperature region. No obvious damage was found for a nanotube bulb illuminating at 2300 K for more than 24 hours in vacuum.