The raw and processed roots of Plygonum multiflorum Thunb(PM) are used to treat different diseases in clinical practice. In order to clarify the influence of processing, a comparative study of chemical substance analy...The raw and processed roots of Plygonum multiflorum Thunb(PM) are used to treat different diseases in clinical practice. In order to clarify the influence of processing, a comparative study of chemical substance analysis was carried out. As the xenobiotics with a high enough exposure in target organs being considered as the potential effective or toxicity components, an in vivo study was also implemented to characterize the constitutes and metabolites, and meanwhile, the factor of compatibility with black bean were also considered. As a result, a total of 148 compounds were detected in PM extracts and more than 40 compounds were only detected in the processed products, which were probably new components produced during the steaming process. In in vivo study, 7 prototype components and 66 metabolites were detected or tentatively identified, 24 of which were reported for the first time. Our results indicated that processing greatly changed the chemical composition of PM and influenced the disposition of the compounds in vivo. To the best of our knowledge, this was the first global comparative study of raw and processed PM. These results expanded our knowledge about the influence of processing of PM and provided the essential data for further efficacy or toxicity studies.展开更多
基金supported by National Natural Science Foundation of China(Nos.81373967 and 81402887)Traditional Chinese Medicine Administration Bureau of Traditional Chinese Medicine Standardization project(No.ZYBZH-Y-SH-38)
文摘The raw and processed roots of Plygonum multiflorum Thunb(PM) are used to treat different diseases in clinical practice. In order to clarify the influence of processing, a comparative study of chemical substance analysis was carried out. As the xenobiotics with a high enough exposure in target organs being considered as the potential effective or toxicity components, an in vivo study was also implemented to characterize the constitutes and metabolites, and meanwhile, the factor of compatibility with black bean were also considered. As a result, a total of 148 compounds were detected in PM extracts and more than 40 compounds were only detected in the processed products, which were probably new components produced during the steaming process. In in vivo study, 7 prototype components and 66 metabolites were detected or tentatively identified, 24 of which were reported for the first time. Our results indicated that processing greatly changed the chemical composition of PM and influenced the disposition of the compounds in vivo. To the best of our knowledge, this was the first global comparative study of raw and processed PM. These results expanded our knowledge about the influence of processing of PM and provided the essential data for further efficacy or toxicity studies.