期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
交互多模型在车辆组合定位系统中的应用(英文)
1
作者 魏文军 高学泽 +1 位作者 葛立民 高忠军 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2018年第3期279-285,共7页
为解决扩展卡尔曼滤波器(extended Kalman filter,EKF)在车辆组合定位系统中因车辆加减速、转弯(以下简称机动)而存在的精度低、稳定性差等问题,设计了一种将交互多模型(interacting multiple model,IMM)算法与非线性卡尔曼滤波器相融... 为解决扩展卡尔曼滤波器(extended Kalman filter,EKF)在车辆组合定位系统中因车辆加减速、转弯(以下简称机动)而存在的精度低、稳定性差等问题,设计了一种将交互多模型(interacting multiple model,IMM)算法与非线性卡尔曼滤波器相融合的自适应滤波算法。该算法使用三种状态空间模型来描述车辆的运动模式,采用多个非线性滤波器对每个模型并行滤波,通过模型匹配似然函数对滤波结果进行加权融合,最终得到系统的定位信息。该方法具备非线性系统滤波器优点,克服了单一模型滤波算法对机动目标定位效果差的缺点。利用该方法和EKF算法分别对GPS/INS/DR车辆组合定位系统中进行了仿真实验,结果表明,该算法的滤波定位精度明显优于目前组合定位系统中所用的EKF滤波器,大幅提高了组合定位系统的稳定性和定位精度。 展开更多
关键词 车辆 组合定位系统 信息融合算法 扩展卡尔曼滤波器 交互多模型
下载PDF
Bone Loss Induced by Simulated Microgravity,Ionizing Radiation and/or Ultradian Rhythms in the Hindlimbs of Rats 被引量:4
2
作者 ZHANG Ya Nan SHI wen Gui +6 位作者 LI He HUA jun Rui FENG Xiu wei wen jun WANG Ju Fang HE Jin Peng LEI Su wen 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2018年第2期126-135,共10页
Objective To better understand the pathological causes of bone loss in a space environment, including microgravity, ionizing radiation, and ultradian rhythms.Methods Sprague Dawley (SD) rats were randomly divided in... Objective To better understand the pathological causes of bone loss in a space environment, including microgravity, ionizing radiation, and ultradian rhythms.Methods Sprague Dawley (SD) rats were randomly divided into a baseline group, a control group, a hindlimb suspension group, a radiation group, a ultradian rhythms group and a combined-three-factor group. After four weeks of hindlimb suspension followed by X-ray exposure and/or ultradian rhythms, biomechanical properties, bone mineral density, histological analysis, microstructure parameters, and bone turnover markers were detected to evaluate bone loss in hindlimbs of rats.Results Simulated microgravity or combined-three factors treatment led to a significant decrease in the biomechanical properties of bones, reduction in bone mineral density, and deterioration of trabecular parameters. Ionizing radiation exposure also showed adverse impact while ultradian rhythms had no significant effect on these outcomes. Decrease in the concentration of the turnover markers bone alkaline phosphatase (bALP), osteocalcin (OCN), and tartrate-resistant acid phosphatase-5b (TRAP-Sb) in serum was in line with the changes in trabecular parameters.Conclusion Simulated microgravity is the main contributor of bone loss. Radiation also results in deleterious effects but ultradian rhythms has no significant effect. Combined-three factors treatment do not exacerbate bone loss when compared to simulated microgravity treatment alone. 展开更多
关键词 Bone loss MICROGRAVITY RADIATION Ultradian rhythms
下载PDF
MiR-663a Inhibits Radiation-Induced Epithelium-to-Mesenchymal Transition by Targeting TGF-β1 被引量:1
3
作者 QU Pei SHAO Zhi Ang +8 位作者 WANG Bing HE Jin Peng ZHANG Ya Nan wei wen jun HUA jun Rui ZHOU Heng LU Dong DING Nan WANG Ju Fang 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2022年第5期437-447,共11页
Objective miR-663 a has been reported to be downregulated by X-ray irradiation and participates in radiation-induced bystander effect via TGF-β1.The goal of this study was to explore the role of mi R-663 a during rad... Objective miR-663 a has been reported to be downregulated by X-ray irradiation and participates in radiation-induced bystander effect via TGF-β1.The goal of this study was to explore the role of mi R-663 a during radiation-induced Epithelium-to-mesenchymal transition(EMT).Methods TGF-β1 or IR was used to induce EMT.After mi R-663 a transfection,cell migration and cell morphological changes were detected and the expression levels of mi R-663 a,TGF-β1,and EMT-related factors were quantified.Results Enhancement of cell migration and promotion of mesenchymal changes induced by either TGF-β1 or radiation were suppressed by mi R-663 a.Furthermore,both X-ray and carbon ion irradiation resulted in the upregulation of TGF-β1 and downregulation of mi R-663 a,while the silencing of TGF-β1 by mi R-663 a reversed the EMT process after radiation.Conclusion Our findings demonstrate an EMT-suppressing effect by mi R-663 a via TGF-β1 in radiationinduced EMT. 展开更多
关键词 Epithelium-to-mesenchymal transition(EMT) Ionizing Radiation TGF-Β1 microRNA miR-663a
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部